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Understanding Complex Systems

* We are experiencing a rapid increase of data storage - digital data will
reach 175 ZB by 2025!

» Paradoxically, our understanding and ability to control complex systems is
often hampered by inherent limitations in the available data



Understanding Complex Systems

We are experiencing a rapid increase of data storage - digital data will
reach 175 ZB by 2025!

Paradoxically, our understanding and ability to control complex systems is
often hampered by inherent limitations in the available data

Despite the success of the network dynamical systems paradigm, when
collecting and analyzing data of complex systems, we are hindered by

= Limited spatial resolution = Restricted access to data
= Non-stationarity =  Paucity of the dataset
= Hidden units = Noise plaguing the dynamics

Often, we only have at our disposal a single, noisy time series, from which
it is hard to identify the salient features of the system



Salient Features of Complex Systems

* How many units compose the system? Can we detect the presence of
hidden units in the system?

(Haehne, Casadiego, Peinke, & Timme, Physical Review Letters, 2019)
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Salient Features of Complex Systems

* How many units compose the system? Can we detect the presence of
hidden units in the system?

How do we detect the presence
(and effect) of unobserved neurons?

* Can we determine key / influential / vulnerable nodes in the system

Human migrations: Power grids:

how do we identify most vulnerable what are the nodes that would trigger
districts to climate change? cascading effects on the network?
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Detecting Salient Features of Complex Systems
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Limitations on the available data
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Limitations on the available data

DASHED LINES:
UNFEASIBLE UNDER DATA LIMITATIONS
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Limitations on the available data
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Vulnerability: Select Findings and Open Problems

* Peripheral nodes play a key role on the overall network dynamics in
power grids (Tyloo et al., Science Advances, 2019)

e An inverse correlation was observed between node resistance
centrality and transient stability of the European power grid

* Similar results have been observed when assessing vulnerability in
the classical consensus problem (Porfiri and Frasca, /EEE TCNS,

2018)



Vulnerability: Select Findings and Open Problems

Peripheral nodes play a key role on the overall network dynamics in
power grids (Tyloo et al., Science Advances, 2019)

An inverse correlation was observed between node resistance
centrality and transient stability of the European power grid

Similar results have been observed when assessing vulnerability in
the classical consensus problem (Porfiri and Frasca, /EEE TCNS,
2018)

Regardless of the performance metric, evaluating vulnerability
requires assessing how specific manipulation at one node translate
into network-level performance
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Ideal versus Real Experiment

—
-

Ideal experiment

Vulnerability can be assessed via ideal experiments, where the
researcher selectively inject a perturbation at each node, by means of

* Calibrated mathematical models
* Experiments where dynamics can be freely manipulated
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Ideal versus Real Experiment
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Ideal experiment Real experiment

* In real experimental observations noise plagues each node

e Can we pinpoint causal influence from time-series of experimental
observations? (without calibrated model / targeted experimental

manipulations)
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The Network Dynamical System

* A priori knowledge on the network system:
" |nteractions are bidirectional (the network topology is undirected)
= Diffusion dynamics are taking place
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* A priori knowledge on the network system:
" |nteractions are bidirectional (the network topology is undirected)
= Diffusion dynamics are taking place

* We consider a network of N diffusively coupled linear systems

dynamics State of the Inner coupling

i-thunit  glement ij of the ~ Matrix
Laplacian matrix
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The Network Dynamical System

* A priori knowledge on the network system:
" |nteractions are bidirectional (the network topology is undirected)
= Diffusion dynamics are taking place

* We consider a network of N diffusively coupled linear systems

N
zh, = Fxj, — Z li;T2, + q; Bnp,
J=1 T-\

i.i.d. noise with 0 mean
positive if node i is affected by noise and covariance matrix 3,

0 otherwise

Determines how noise diffuses
on the state variables
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The Network Dynamical System

A priori knowledge on the network system:
" |nteractions are bidirectional (the network topology is undirected)
= Diffusion dynamics are taking place

We consider a network of N diffusively coupled linear systems
N
:C};Jrl = F:z:}C — Z lij ] + q@-Bn,i€
j=1
We are not aware of the individual dynamics, network topology,
that is, the model is uncalibrated

Available data (encoded by the output function)
State not fully accessible
yr = (In ® C)zy,
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Vulnerability of Network Dynamical Systems

e Let usintroduce the steady-state covariance matrix

E@\limk—htoo E [£:&)

diag {q1,...,qn}
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Vulnerability of Network Dynamical Systems

e Let usintroduce the steady-state covariance matrix
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* To study vulnerability to an attack at the i-th unit we would need

to consider an ideal experiment where noise is only injected at

unit i - Q= e




Vulnerability of Network Dynamical Systems

Let us introduce the steady-state covariance matrix

29 = limg s 400 B [€1E]
To study vulnerability to an attack at the i-th unit we would need
to consider an ideal experiment where noise is only injected at

unit i - Q= e

Vulnerability could be then quantified as

T e, T
Vul(i, M) = Tr [(M 9 )25 (M @ C )]
where M = diag{m1,...,my} weights the relevance of each
node in the network;

Unfortunately, from time-series of the real experiTment we can
only estimate ©¢ = lim E [yxy. | and not =5i%

t—+o00
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Reconciling Ideal and Real Experiments

* |deal and real experiments can be reconciled due to two classical
principles in circuit theory, the superposition and reciprocity
principles

1. From the model linearity, the response of the system to noise

injected at all nodes can be obtained as the sum of the
responses to noise individually injected at each node



Reconciling Ideal and Real Experiments

* |deal and real experiments can be reconciled due to two classical
principles in circuit theory, the superposition and reciprocity
principles

1. From the model linearity, the response of the system to noise

injected at all nodes can be obtained as the sum of the

responses to noise individually injected at each node

2. Being the network undirected, we proved that the reciprocity
principle carries over to the context of network dynamical
systems:

The effect of noise injected at node i on node j is equivalent
to the effect of noise injected at node j on node i

17 21
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Vulnerability from Time-Series

By applying the superposition and reciprocity principles, we can
exactly infer vulnerability when M = Q

Vul(i, M) = Tr (R® I,)X (R ® 1))

X

where R = Iy — In1y5/N

Vulnerability can be then estimated from the sample covariance
matrix of the network output vy,

The result can be extended to the case of non diagonal M

When instead M and () are different, lower and upper bound for
the vulnerability can be computed instead



Verification on Synthetic Data

* We consider the same network examined in (Fitch, Leonard, 2015), with
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Firearm Prevalence in the U.S.

* Firearm acquisition in the U.S. has an inherent network
structure (Porfiri et al., 2020)

* Firearm acquisitions in any State are influenced by acquisitions
in other States
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Firearm Prevalence in the U.S.

Firearm acquisition in the U.S. has an inherent network
structure (Porfiri et al., 2020)

Firearm acquisitions in any State are influenced by acquisitions
in other States

Background checks are a proxy of firearm acquisitions
We analyzed data from 1999 to 2017
The time-series has been detrended and seasonally adjusted

We then calculated the sample mean covariance matrix
associated to the pre-processed time-series

Assuming that noise enters all the States in the same manner,
we estimated the vulnerability index we defined



Firearm Prevalence in the U.S.
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 The 5 most influential states are South Dakota, Tennessee, Alaska,
Alabama, and Colorado
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Firearm Prevalence in the U.S.
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* These states are among those with the most permissive legal
environment (quantified as the fraction of firearm safety law in effect)
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Firearm Prevalence in the U.S.
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e States in which it is easier to purchase a firearm might have a higher
connectivity in the network: other States may use them as proxy of
potential changes in firearm regulations

w
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Analysis of a Soccer Dataset

We examine a dataset of the positions of 9 soccer players in a
soccer game

We focus on the time series of speed and compute vulnerability
In this context, vulnerability is associated to lack of coordination
Player 4 and 8 appear to be the key players in the team

1 2 3 4 5 6 7 8 9
Player identity
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Analysis of a Soccer Dataset

* Player 4 acts behind the strikers, while Player 8 is one of the two
strikers

Player 4 Player 8

68 ! 68 !
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x-position (m) x-position (m)

* A reduction in the coordination of either of these two players
could hinder the coordination of the whole team

* Interesting, they are among the player with the least ball
possession (movements off the ball are crucial)
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Discussion

We established a novel approach to identify influential nodes in
network dynamical systems from time-series of real experiments

We focused networks of time-invariant, diffusively coupled linear
systems that synchronize against added noise

For this class of problems, the influence of a node is defined as
the extent to which adding noise at that particular node affects
the steady-state covariance of the disagreement dynamics

We demonstrate that the influence of each of the nodes can be
effectively inferred from time series

The chief reason for the correspondence between ideal and real
experiments lies in the reciprocity principle

P. De Lellis - Lyon, October 27, 2021 17/18



Ongoing and Future Research

In the same setting, can we identify other salient features (e.g.
numerosity, hidden units)?

Devise methodologies for inferring influence from real experiments
in which nodes have heterogeneous nodal dynamics

The entire methodology assumes that the network is undirected.
which allows for deriving modal equations that would be not
feasible in the case of directed networks.

The mathematical treatment is presently limited to time-invariant
linear dynamics, thereby calling for further research on temporal
networks and nonsmooth dynamics.
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