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Understanding Complex Systems

• We are experiencing a rapid increase of data storage - digital data will 
reach 175 ZB by 2025!

• Paradoxically, our understanding and ability to control complex systems is 
often hampered by inherent limitations in the available data

• Despite the success of the network dynamical systems paradigm, when 
collecting and analyzing data of complex systems, we are hindered by

§ Limited spatial resolution 
§ Non-stationarity
§ Hidden units

• Often, we only have at our disposal a single, noisy time series, from which 
it is hard to identify the salient features of the system
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§ Restricted access to data
§ Paucity of the dataset
§ Noise plaguing the dynamics
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• How many units compose the system? Can we detect the presence of 
hidden units in the system?  
(Haehne, Casadiego, Peinke, & Timme, Physical Review Letters, 2019)
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How do we detect the presence
(and effect) of unobserved neurons?
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• How many units compose the system? Can we detect the presence of 
hidden units in the system?

How do we detect the presence
(and effect) of unobserved neurons?

• Can we determine key / influential / vulnerable nodes in the system
Human migrations: 

how do we identify most vulnerable
districts to climate change?

Power grids:
what are the nodes that would trigger

cascading effects on the network?
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Vulnerability: Select Findings and Open Problems
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• Peripheral nodes play a key role on the overall network dynamics in 
power grids (Tyloo et al., Science Advances, 2019)

• An inverse correlation was observed between node resistance 
centrality and transient stability of the European power grid

• Similar results have been observed when assessing vulnerability in 
the classical consensus problem (Porfiri and Frasca, IEEE TCNS, 
2018)
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• Peripheral nodes play a key role on the overall network dynamics in 
power grids (Tyloo et al., Science Advances, 2019)

• An inverse correlation was observed between node resistance 
centrality and transient stability of the European power grid

• Similar results have been observed when assessing vulnerability in 
the classical consensus problem (Porfiri and Frasca, IEEE TCNS, 
2018)

• Regardless of the performance metric, evaluating vulnerability 
requires assessing how specific manipulation at one node translate 
into network-level performance
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Vulnerability can be assessed via ideal experiments, where the 
researcher selectively inject a perturbation at each node, by means of
• Calibrated mathematical models
• Experiments where dynamics can be freely manipulated

2

Ideal experiment Real experiment

Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�x
j
k + qiB⌘ik, (1)

where xi
k 2 Rn is the state of the i-the unit at time k;

F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1k, . . . , ⌘

N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as

xk+1 = (IN ⌦ F � L⌦ �)xk + (Q⌦B)⌘k, (2)

where IN is the identity matrix in RN , xk =⇥
(x1

k)
T, . . . , (xN

k )
T
⇤T, ⌘k =

⇥
(⌘1k)

T . . . , (⌘nk )
T
⇤T, and

Q = diag {q1, . . . , qN} 2 RN⇥N . In general, the state of
each unit may not be fully measurable, such that we have
limited access to only to the output yk = (IN ⌦C)xk, where
C 2 Rp⇥n.
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of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
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series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
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• In real experimental observations noise plagues each node
• Can we pinpoint causal influence from time-series of experimental 

observations? (without calibrated model / targeted experimental  
manipulations)
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
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through targeted interventions, but that would require fine
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event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].
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United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
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§ Interactions are bidirectional (the network topology is undirected)
§ Diffusion dynamics are taking place
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• A priori knowledge on the network system:
§ Interactions are bidirectional (the network topology is undirected)
§ Diffusion dynamics are taking place 

• We consider a network of 𝑁 diffusively coupled linear systems

2
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
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late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
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mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k;

F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as

xk+1 = (IN ⌦ F � L ⌦ �)xk + (Q ⌦ B)⌘k, (2)

where IN is the identity matrix in RN , xk =⇥
(x1

k)
T, . . . , (xN

k )
T
⇤T, ⌘k =

⇥
(⌘1

k)
T . . . , (⌘n

k )
T
⇤T, and

Q = diag {q1, . . . , qN} 2 RN⇥N . In general, the state of
each unit may not be fully measurable, such that we have
limited access to only to the output yk = (IN ⌦ C)xk, where
C 2 Rp⇥n.
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].
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Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
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k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k;

F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as

xk+1 = (IN ⌦ F � L ⌦ �)xk + (Q ⌦ B)⌘k, (2)
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbation at a
selected unit ( circled in red), and observes its effect on the overall dynamics
of the system from the time-series of each unit (shown as a box). In practice,
these ideal experiments are not feasible and the researcher should infer causal
influence from real experimental observations where noise plagues each node.

for the network dynamical system, which could vary from
transient [13] to steady-state [17] features, studying causal
influence requires a series of ideal experiments where the
researcher can evaluate how specific manipulations at the
node-level translate into network-level performance. These
ideal experiments are typically based on an available mathe-
matical model that captures the interactions between the units
and their individual dynamics. However, seldom, do we have
complete knowledge about the network dynamical system,
whereby neither the dynamics of each individual unit nor the
topology of the interconnecting network are exactly known
to the researcher. In principle, a potential way around the
lack of a predictive mathematical model is to experimentally
probe the system through targeted interventions, but that
would require fine control over experimental variables that is
often unfeasible. Is it possible to identify key players in the
network from real experimental observations, without either
a calibrated mathematical model or the possibility to perform
experimental manipulations to support any manipulation of the
dynamics and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements the
growing body of technical literature that is shedding light on
the inner workings of dynamical systems from time-series,
without the need of a calibrated mathematical model. For
example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [4]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [22];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [23]. Not only
can statistically-principled methods help in the inference of
network topology, but also they can assist in the inference of
the network size and the discovery of hidden nodes [24].

Without a calibrated mathematical model or targeted ex-
perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observa-
tions where each node is plagued by noise. We focus on
synchronization problems, wherein the causal influence of
a node is defined as the extent to which adding noise at
that particular node affects the overall synchronization of
the entire network, that is, the vulnerability of the network

to a targeted disturbance. For a wide class of mathematical
models of network synchronization, we establish a closed-form
expression for the vulnerability, in terms of topological and
dynamic features of the network system. In agreement with
one’s expectation, a disturbance added to any of the nodes
affects the dynamics of all the other nodes in the network.
However, the extent of this interaction can be retrieved from
real experimental observations, in which noise is acting on
all nodes of the network, thereby affording the inference of
causal influence without either a calibrated model or tailored
experimental manipulations. Such a claim is anchored in the
discovery of a reciprocity principle for network dynamical
systems, which extends to this field of investigation a classical
tool in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our inference approach is applicable. In Section III, we study
the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second-order dynamics. In Section VI, we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of the study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled, linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k; F 2

Rn⇥n is a matrix that specifies the individual dynamics; lij
is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology
[27]; � 2 Rn⇥n is the inner coupling matrix constraining
the interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable. Model (1) is widely used to study collective dynamics
in the vicinity of a synchronization manifold [28], [29].

Using Kronecker algebra [30], (1) can be rewritten in
compact matrix form as

xk+1 = (IN ⌦ F � L ⌦ �)xk + (Q ⌦ B)⌘k, (2)

where IN is the identity matrix in RN , xk =⇥
(x1

k)
T, . . . , (xN

k )
T
⇤T, ⌘k =

⇥
(⌘1

k)
T . . . , (⌘n

k )
T
⇤T, and

Q = diag {q1, . . . , qN} 2 RN⇥N . The state of each unit may
not be fully measurable, such that we have limited access to
only the output yk = (IN ⌦ C)xk, where C 2 Rp⇥n.
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• A priori knowledge on the network system:
§ Interactions are bidirectional (the network topology is undirected)
§ Diffusion dynamics are taking place 

• We consider a network of 𝑁 diffusively coupled linear systems
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k;

F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as

xk+1 = (IN ⌦ F � L ⌦ �)xk + (Q ⌦ B)⌘k, (2)

where IN is the identity matrix in RN , xk =⇥
(x1
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T
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⇥
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⇤T, and

Q = diag {q1, . . . , qN} 2 RN⇥N . In general, the state of
each unit may not be fully measurable, such that we have
limited access to only to the output yk = (IN ⌦ C)xk, where
C 2 Rp⇥n.
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as
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where xi
k 2 Rn is the state of the i-the unit at time k;

F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbation at a
selected unit ( circled in red), and observes its effect on the overall dynamics
of the system from the time-series of each unit (shown as a box). In practice,
these ideal experiments are not feasible and the researcher should infer causal
influence from real experimental observations where noise plagues each node.

for the network dynamical system, which could vary from
transient [13] to steady-state [17] features, studying causal
influence requires a series of ideal experiments where the
researcher can evaluate how specific manipulations at the
node-level translate into network-level performance. These
ideal experiments are typically based on an available mathe-
matical model that captures the interactions between the units
and their individual dynamics. However, seldom, do we have
complete knowledge about the network dynamical system,
whereby neither the dynamics of each individual unit nor the
topology of the interconnecting network are exactly known
to the researcher. In principle, a potential way around the
lack of a predictive mathematical model is to experimentally
probe the system through targeted interventions, but that
would require fine control over experimental variables that is
often unfeasible. Is it possible to identify key players in the
network from real experimental observations, without either
a calibrated mathematical model or the possibility to perform
experimental manipulations to support any manipulation of the
dynamics and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements the
growing body of technical literature that is shedding light on
the inner workings of dynamical systems from time-series,
without the need of a calibrated mathematical model. For
example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [4]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [22];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [23]. Not only
can statistically-principled methods help in the inference of
network topology, but also they can assist in the inference of
the network size and the discovery of hidden nodes [24].

Without a calibrated mathematical model or targeted ex-
perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observa-
tions where each node is plagued by noise. We focus on
synchronization problems, wherein the causal influence of
a node is defined as the extent to which adding noise at
that particular node affects the overall synchronization of
the entire network, that is, the vulnerability of the network

to a targeted disturbance. For a wide class of mathematical
models of network synchronization, we establish a closed-form
expression for the vulnerability, in terms of topological and
dynamic features of the network system. In agreement with
one’s expectation, a disturbance added to any of the nodes
affects the dynamics of all the other nodes in the network.
However, the extent of this interaction can be retrieved from
real experimental observations, in which noise is acting on
all nodes of the network, thereby affording the inference of
causal influence without either a calibrated model or tailored
experimental manipulations. Such a claim is anchored in the
discovery of a reciprocity principle for network dynamical
systems, which extends to this field of investigation a classical
tool in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our inference approach is applicable. In Section III, we study
the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second-order dynamics. In Section VI, we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of the study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled, linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as
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where xi
k 2 Rn is the state of the i-the unit at time k; F 2

Rn⇥n is a matrix that specifies the individual dynamics; lij
is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology
[27]; � 2 Rn⇥n is the inner coupling matrix constraining
the interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable. Model (1) is widely used to study collective dynamics
in the vicinity of a synchronization manifold [28], [29].
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compact matrix form as
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not be fully measurable, such that we have limited access to
only the output yk = (IN ⌦ C)xk, where C 2 Rp⇥n.
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.
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F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
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are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as
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where IN is the identity matrix in RN , xk =⇥
(x1

k)
T, . . . , (xN

k )
T
⇤T, ⌘k =

⇥
(⌘1

k)
T . . . , (⌘n

k )
T
⇤T, and

Q = diag {q1, . . . , qN} 2 RN⇥N . In general, the state of
each unit may not be fully measurable, such that we have
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experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).
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are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
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defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
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synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.
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of the i-th unit can be written as
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where xi
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lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1
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are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
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Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbation at a
selected unit ( circled in red), and observes its effect on the overall dynamics
of the system from the time-series of each unit (shown as a box). In practice,
these ideal experiments are not feasible and the researcher should infer causal
influence from real experimental observations where noise plagues each node.

for the network dynamical system, which could vary from
transient [13] to steady-state [17] features, studying causal
influence requires a series of ideal experiments where the
researcher can evaluate how specific manipulations at the
node-level translate into network-level performance. These
ideal experiments are typically based on an available mathe-
matical model that captures the interactions between the units
and their individual dynamics. However, seldom, do we have
complete knowledge about the network dynamical system,
whereby neither the dynamics of each individual unit nor the
topology of the interconnecting network are exactly known
to the researcher. In principle, a potential way around the
lack of a predictive mathematical model is to experimentally
probe the system through targeted interventions, but that
would require fine control over experimental variables that is
often unfeasible. Is it possible to identify key players in the
network from real experimental observations, without either
a calibrated mathematical model or the possibility to perform
experimental manipulations to support any manipulation of the
dynamics and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements the
growing body of technical literature that is shedding light on
the inner workings of dynamical systems from time-series,
without the need of a calibrated mathematical model. For
example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [4]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [22];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [23]. Not only
can statistically-principled methods help in the inference of
network topology, but also they can assist in the inference of
the network size and the discovery of hidden nodes [24].

Without a calibrated mathematical model or targeted ex-
perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observa-
tions where each node is plagued by noise. We focus on
synchronization problems, wherein the causal influence of
a node is defined as the extent to which adding noise at
that particular node affects the overall synchronization of
the entire network, that is, the vulnerability of the network

to a targeted disturbance. For a wide class of mathematical
models of network synchronization, we establish a closed-form
expression for the vulnerability, in terms of topological and
dynamic features of the network system. In agreement with
one’s expectation, a disturbance added to any of the nodes
affects the dynamics of all the other nodes in the network.
However, the extent of this interaction can be retrieved from
real experimental observations, in which noise is acting on
all nodes of the network, thereby affording the inference of
causal influence without either a calibrated model or tailored
experimental manipulations. Such a claim is anchored in the
discovery of a reciprocity principle for network dynamical
systems, which extends to this field of investigation a classical
tool in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our inference approach is applicable. In Section III, we study
the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second-order dynamics. In Section VI, we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of the study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled, linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as
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where xi
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Rn⇥n is a matrix that specifies the individual dynamics; lij
is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology
[27]; � 2 Rn⇥n is the inner coupling matrix constraining
the interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable. Model (1) is widely used to study collective dynamics
in the vicinity of a synchronization manifold [28], [29].

Using Kronecker algebra [30], (1) can be rewritten in
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not be fully measurable, such that we have limited access to
only the output yk = (IN ⌦ C)xk, where C 2 Rp⇥n.
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• A priori knowledge on the network system:
§ Interactions are bidirectional (the network topology is undirected)
§ Diffusion dynamics are taking place 

• We consider a network of 𝑁 diffusively coupled linear systems

• We are not aware of the individual dynamics, network topology, 
that is, the model is uncalibrated

• Available data (encoded by the output function)
• State not fully accessible
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as
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L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
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are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
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Using Kronecker algebra [27], (1) can be rewritten in
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].
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defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.
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by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as
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limited access to only to the output yk = (IN ⌦ C)xk, where
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbation at a
selected unit ( circled in red), and observes its effect on the overall dynamics
of the system from the time-series of each unit (shown as a box). In practice,
these ideal experiments are not feasible and the researcher should infer causal
influence from real experimental observations where noise plagues each node.

for the network dynamical system, which could vary from
transient [13] to steady-state [17] features, studying causal
influence requires a series of ideal experiments where the
researcher can evaluate how specific manipulations at the
node-level translate into network-level performance. These
ideal experiments are typically based on an available mathe-
matical model that captures the interactions between the units
and their individual dynamics. However, seldom, do we have
complete knowledge about the network dynamical system,
whereby neither the dynamics of each individual unit nor the
topology of the interconnecting network are exactly known
to the researcher. In principle, a potential way around the
lack of a predictive mathematical model is to experimentally
probe the system through targeted interventions, but that
would require fine control over experimental variables that is
often unfeasible. Is it possible to identify key players in the
network from real experimental observations, without either
a calibrated mathematical model or the possibility to perform
experimental manipulations to support any manipulation of the
dynamics and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements the
growing body of technical literature that is shedding light on
the inner workings of dynamical systems from time-series,
without the need of a calibrated mathematical model. For
example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [4]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [22];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [23]. Not only
can statistically-principled methods help in the inference of
network topology, but also they can assist in the inference of
the network size and the discovery of hidden nodes [24].

Without a calibrated mathematical model or targeted ex-
perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observa-
tions where each node is plagued by noise. We focus on
synchronization problems, wherein the causal influence of
a node is defined as the extent to which adding noise at
that particular node affects the overall synchronization of
the entire network, that is, the vulnerability of the network

to a targeted disturbance. For a wide class of mathematical
models of network synchronization, we establish a closed-form
expression for the vulnerability, in terms of topological and
dynamic features of the network system. In agreement with
one’s expectation, a disturbance added to any of the nodes
affects the dynamics of all the other nodes in the network.
However, the extent of this interaction can be retrieved from
real experimental observations, in which noise is acting on
all nodes of the network, thereby affording the inference of
causal influence without either a calibrated model or tailored
experimental manipulations. Such a claim is anchored in the
discovery of a reciprocity principle for network dynamical
systems, which extends to this field of investigation a classical
tool in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our inference approach is applicable. In Section III, we study
the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second-order dynamics. In Section VI, we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of the study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled, linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as
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where xi
k 2 Rn is the state of the i-the unit at time k; F 2

Rn⇥n is a matrix that specifies the individual dynamics; lij
is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology
[27]; � 2 Rn⇥n is the inner coupling matrix constraining
the interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable. Model (1) is widely used to study collective dynamics
in the vicinity of a synchronization manifold [28], [29].

Using Kronecker algebra [30], (1) can be rewritten in
compact matrix form as
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⇥
(⌘1

k)
T . . . , (⌘n

k )
T
⇤T, and

Q = diag {q1, . . . , qN} 2 RN⇥N . The state of each unit may
not be fully measurable, such that we have limited access to
only the output yk = (IN ⌦ C)xk, where C 2 Rp⇥n.
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].
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perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.
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lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as
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panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].
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perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.
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dynamical systems in a discrete-time setting. The dynamics
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are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbation at a
selected unit ( circled in red), and observes its effect on the overall dynamics
of the system from the time-series of each unit (shown as a box). In practice,
these ideal experiments are not feasible and the researcher should infer causal
influence from real experimental observations where noise plagues each node.

for the network dynamical system, which could vary from
transient [13] to steady-state [17] features, studying causal
influence requires a series of ideal experiments where the
researcher can evaluate how specific manipulations at the
node-level translate into network-level performance. These
ideal experiments are typically based on an available mathe-
matical model that captures the interactions between the units
and their individual dynamics. However, seldom, do we have
complete knowledge about the network dynamical system,
whereby neither the dynamics of each individual unit nor the
topology of the interconnecting network are exactly known
to the researcher. In principle, a potential way around the
lack of a predictive mathematical model is to experimentally
probe the system through targeted interventions, but that
would require fine control over experimental variables that is
often unfeasible. Is it possible to identify key players in the
network from real experimental observations, without either
a calibrated mathematical model or the possibility to perform
experimental manipulations to support any manipulation of the
dynamics and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements the
growing body of technical literature that is shedding light on
the inner workings of dynamical systems from time-series,
without the need of a calibrated mathematical model. For
example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [4]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [22];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [23]. Not only
can statistically-principled methods help in the inference of
network topology, but also they can assist in the inference of
the network size and the discovery of hidden nodes [24].

Without a calibrated mathematical model or targeted ex-
perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observa-
tions where each node is plagued by noise. We focus on
synchronization problems, wherein the causal influence of
a node is defined as the extent to which adding noise at
that particular node affects the overall synchronization of
the entire network, that is, the vulnerability of the network

to a targeted disturbance. For a wide class of mathematical
models of network synchronization, we establish a closed-form
expression for the vulnerability, in terms of topological and
dynamic features of the network system. In agreement with
one’s expectation, a disturbance added to any of the nodes
affects the dynamics of all the other nodes in the network.
However, the extent of this interaction can be retrieved from
real experimental observations, in which noise is acting on
all nodes of the network, thereby affording the inference of
causal influence without either a calibrated model or tailored
experimental manipulations. Such a claim is anchored in the
discovery of a reciprocity principle for network dynamical
systems, which extends to this field of investigation a classical
tool in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our inference approach is applicable. In Section III, we study
the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second-order dynamics. In Section VI, we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of the study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled, linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as
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Rn⇥n is a matrix that specifies the individual dynamics; lij
is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology
[27]; � 2 Rn⇥n is the inner coupling matrix constraining
the interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable. Model (1) is widely used to study collective dynamics
in the vicinity of a synchronization manifold [28], [29].

Using Kronecker algebra [30], (1) can be rewritten in
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⇤T, and

Q = diag {q1, . . . , qN} 2 RN⇥N . The state of each unit may
not be fully measurable, such that we have limited access to
only the output yk = (IN ⌦ C)xk, where C 2 Rp⇥n.
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• Let us introduce the steady-state covariance matrix
=

3

By introducing the average state x̄k =
PN

i=1 xi
k/N , we

define the disagreement vector ⇠k := xk � N ⌦ x̄k = (R ⌦
In)xk, where N is the vector of all ones in RN and R =

IN � T
N/N is the projector from RN to ?

N . Hence, the
disagreement dynamics is

⇠k+1 = (R ⌦ F � L ⌦ �)⇠k + RQ ⌦ B⌘k. (3)

We assume that the network topology is undirected so that
L is positive semi-definite symmetric matrix, whose elements
on the diagonal are non-negative and those off the diagonal are
non-positive [27]. We order the eigenvalues of L in an increas-
ing order, such that �1 = 0 is the eigenvalue corresponding
to the eigenvector v1 = /

p
N and 0  �2  . . . �N . In

general, the network can be weighted so that the value of
the elements off-the diagonal do not need to be zero or minus
one. We do not impose that F is stable, thereby encompassing
the classical consensus problems (F scalar and equal to one)
[31]. Instead, we hypothesize that F, L, and � are such that
the spectral radius of (R⌦F �L⌦�) is less than one, thereby
leading to an asymptotically stable disagreement dynamics in
the absence of noise. This will, in turn, lead to a covariance
matrix ⌅

Q
k = E[⇠k⇠T

k ] that will converge to a finite steady-state
matrix ⌅

Q
1 [32], where E[·] is used to denote expectation with

respect to the �-algebra associated with the added noise to an
otherwise deterministic system.

To compute closed-form expressions for the steady-state
covariance, we apply the similarity transformation (V T ⌦ In),
where V is assembled by juxtaposing column-wise the or-
thonormal eigenvectors of W . The modal dynamics ⇣k =

(V T ⌦ In)⇠k has the following block-diagonal form:

⇣k+1 = (V TRV ⌦ F � ⇤ ⌦ �)⇣k + (V TRQ ⌦ B)⌘k, (4)

where ⇤ = V TLV = diag{�1, . . . , �N}. Note that V TRV
is the identity matrix with the first element set to zero and
that V TR collates the eigenvectors of L row-wise, except
of the first row that is null. Utilizing (·)i to isolate the i-
th n-dimensional block of a vector in RnN , we have that (4)
becomes

(⇣k+1)1 = 0 (5a)

(⇣k+1)r = (F � �r�) (⇣k)r +

NX

s=1

qsvrsB⌘k (5b)

for r = 2, . . . , N , where vrs be the s-th component of the r-
th eigenvector of L, associated with eigenvalue �r. Equation
(5a) indicates that, irrespective of the added noise, the modal
dynamics along the first modal coordinate is identically equal
to zero, while the others in (5b) are modulated by the spectral
properties of L (through both the eigenvalues and eigenvec-
tors) and the internal dynamics.

III. VULNERABILITY OF THE NETWORK DYNAMICAL
SYSTEM TO TARGETED ATTACKS

To pinpoint the most influential or key nodes in the network,
we consider an ideal experiment where noise is only injected
at one unit, such that Q = i

T
i ; i is the i-th unit vector of

the natural basis of RN , specifying that the noise is selectively
injected only at the i-th node. We evaluate the impact of the

added noise on the network output by computing the steady-
state covariance of the entire disagreement dynamics ⌅

i
T
i1 =

limk!+1 E
⇥
⇠k⇠T

k

⇤
.

To this aim, we examine the modal dynamics in (5), which
has a simpler block-diagonal structure. Specifically, we start
by computing the steady-state covariance matrix e⌅ i

T
i1 =

limk!+1 E
⇥
⇣k⇣T

k

⇤
of the modal dynamics, which admits the

following block-form solution in terms of the individual node
dynamics and of the network topology:

Lemma 1. Let vsr be the r-th component of the s-th eigen-
vector of L, associated with eigenvalue �s. The steady-state
of the N2 blocks of size n ⇥ n of e⌅ i

T
i1 is given by

⇣
e⌅ i

T
i1

⌘

1s
=

⇣
e⌅ i

T
i1

⌘

s1
= 0, s = 1, . . . , N, (6a)

⇣
e⌅ i

T
i1

⌘

rs
= vrivsivec

�1
⇥
Grsvec

⇥
B⌃⌘BT

⇤⇤
,

r, s = 2, . . . , N, (6b)

where

Grs = (In2 � (F � �s�) ⌦ (F � �r�))
�1 (7)

is a function of the Laplacian eigenvalues, the individual
dynamics F , and the inner coupling matrix �.

Proof. Equation (6a) follows from (5a). Likewise, (6b) is
derived by setting qs = 0 for all s 6= i and qi = 1 in (5b), so
that

(⇣k+1)r = (F � �r�) (⇣k)r + vriB⌘k (8)

Hence, the generic rs-th block is governed by the following
dynamics:

(⇣k+1)r (⇣k+1)
T
s = (F � �r�) (⇣k)r (⇣k)

T
s (F � �s�)

T

+ vrivsiB⌘k⌘T
k BT

+ vsi(F � �r�) (⇣k)r ⌘T
k BT

+ vriB⌘k (⇣k)
T
s (F � �s)

T.

(9)

By taking the expectation of both sides of the equation, noting
that noise has zero mean, and recalling that the state at time
k is independent of noise at time k, we establish

⇣
e⌅ i

T
i

k+1

⌘

rs
= (F � �r�)

⇣
e⌅ i

T
i1

⌘

rs
(F � �s�)

T

+ vrivsiB⌃⌘BT, r, s = 2, . . . , N,
(10)

Equation (10) can be transformed into a linear system by
matrix vectorization, whose solution for k ! +1 is equal to

vec

h⇣
e⌅ i

T
i1

⌘

rs

i
= vrivsiGrsvec

⇥
B⌃⌘BT

⇤
, (11)

where each of these equations identifies the effect of noise
injected at the i-th node on the covariance of the r-th and s-th
modal coordinates. The thesis then follows.

Remark 1. A similar decomposition for the covariance of the
error dynamics in the continuous-time case is presented in
equations (23) and (24) in [17].

The overall effect of noise added at node i can be quantified
by computing the steady-state covariance matrix ⌅

1
k associ-

ated with the disagreement vector, similar to [17]–[19]. Such
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By introducing the average state x̄k =
PN

i=1 xi
k/N , we

define the disagreement vector ⇠k := xk � N ⌦ x̄k = (R ⌦
In)xk, where N is the vector of all ones in RN and R =

IN � T
N/N is the projector from RN to ?

N . Hence, the
disagreement dynamics is

⇠k+1 = (R ⌦ F � L ⌦ �)⇠k + RQ ⌦ B⌘k. (3)

We assume that the network topology is undirected so that
L is positive semi-definite symmetric matrix, whose elements
on the diagonal are non-negative and those off the diagonal are
non-positive [27]. We order the eigenvalues of L in an increas-
ing order, such that �1 = 0 is the eigenvalue corresponding
to the eigenvector v1 = /

p
N and 0  �2  . . . �N . In

general, the network can be weighted so that the value of
the elements off-the diagonal do not need to be zero or minus
one. We do not impose that F is stable, thereby encompassing
the classical consensus problems (F scalar and equal to one)
[31]. Instead, we hypothesize that F, L, and � are such that
the spectral radius of (R⌦F �L⌦�) is less than one, thereby
leading to an asymptotically stable disagreement dynamics in
the absence of noise. This will, in turn, lead to a covariance
matrix ⌅

Q
k = E[⇠k⇠T

k ] that will converge to a finite steady-state
matrix ⌅

Q
1 [32], where E[·] is used to denote expectation with

respect to the �-algebra associated with the added noise to an
otherwise deterministic system.

To compute closed-form expressions for the steady-state
covariance, we apply the similarity transformation (V T ⌦ In),
where V is assembled by juxtaposing column-wise the or-
thonormal eigenvectors of W . The modal dynamics ⇣k =

(V T ⌦ In)⇠k has the following block-diagonal form:

⇣k+1 = (V TRV ⌦ F � ⇤ ⌦ �)⇣k + (V TRQ ⌦ B)⌘k, (4)

where ⇤ = V TLV = diag{�1, . . . , �N}. Note that V TRV
is the identity matrix with the first element set to zero and
that V TR collates the eigenvectors of L row-wise, except
of the first row that is null. Utilizing (·)i to isolate the i-
th n-dimensional block of a vector in RnN , we have that (4)
becomes

(⇣k+1)1 = 0 (5a)

(⇣k+1)r = (F � �r�) (⇣k)r +

NX

s=1

qsvrsB⌘k (5b)

for r = 2, . . . , N , where vrs be the s-th component of the r-
th eigenvector of L, associated with eigenvalue �r. Equation
(5a) indicates that, irrespective of the added noise, the modal
dynamics along the first modal coordinate is identically equal
to zero, while the others in (5b) are modulated by the spectral
properties of L (through both the eigenvalues and eigenvec-
tors) and the internal dynamics.

III. VULNERABILITY OF THE NETWORK DYNAMICAL
SYSTEM TO TARGETED ATTACKS

To pinpoint the most influential or key nodes in the network,
we consider an ideal experiment where noise is only injected
at one unit, such that Q = i

T
i ; i is the i-th unit vector of

the natural basis of RN , specifying that the noise is selectively
injected only at the i-th node. We evaluate the impact of the

added noise on the network output by computing the steady-
state covariance of the entire disagreement dynamics ⌅

i
T
i1 =

limk!+1 E
⇥
⇠k⇠T

k

⇤
.

To this aim, we examine the modal dynamics in (5), which
has a simpler block-diagonal structure. Specifically, we start
by computing the steady-state covariance matrix e⌅ i

T
i1 =

limk!+1 E
⇥
⇣k⇣T

k

⇤
of the modal dynamics, which admits the

following block-form solution in terms of the individual node
dynamics and of the network topology:

Lemma 1. Let vsr be the r-th component of the s-th eigen-
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r, s = 2, . . . , N, (6b)

where

Grs = (In2 � (F � �s�) ⌦ (F � �r�))
�1 (7)

is a function of the Laplacian eigenvalues, the individual
dynamics F , and the inner coupling matrix �.

Proof. Equation (6a) follows from (5a). Likewise, (6b) is
derived by setting qs = 0 for all s 6= i and qi = 1 in (5b), so
that
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(9)

By taking the expectation of both sides of the equation, noting
that noise has zero mean, and recalling that the state at time
k is independent of noise at time k, we establish
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Equation (10) can be transformed into a linear system by
matrix vectorization, whose solution for k ! +1 is equal to
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where each of these equations identifies the effect of noise
injected at the i-th node on the covariance of the r-th and s-th
modal coordinates. The thesis then follows.

Remark 1. A similar decomposition for the covariance of the
error dynamics in the continuous-time case is presented in
equations (23) and (24) in [17].

The overall effect of noise added at node i can be quantified
by computing the steady-state covariance matrix ⌅

1
k associ-

ated with the disagreement vector, similar to [17]–[19]. Such
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k;

F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as

xk+1 = (IN ⌦ F � L ⌦ �)xk + (Q ⌦ B)⌘k, (2)

where IN is the identity matrix in RN , xk =⇥
(x1

k)
T, . . . , (xN

k )
T
⇤T, ⌘k =

⇥
(⌘1

k)
T . . . , (⌘n

k )
T
⇤T, and

Q = diag {q1, . . . , qN} 2 RN⇥N . In general, the state of
each unit may not be fully measurable, such that we have
limited access to only to the output yk = (IN ⌦ C)xk, where
C 2 Rp⇥n.

2

Ideal experiment Real experiment

Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k;

F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as

xk+1 = (IN ⌦ F � L ⌦ �)xk + (Q ⌦ B)⌘k, (2)

where IN is the identity matrix in RN , xk =⇥
(x1

k)
T, . . . , (xN
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T
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⇥
(⌘1
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k )
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⇤T, and

Q = diag {q1, . . . , qN} 2 RN⇥N . In general, the state of
each unit may not be fully measurable, such that we have
limited access to only to the output yk = (IN ⌦ C)xk, where
C 2 Rp⇥n.

Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbation at a
selected unit ( circled in red), and observes its effect on the overall dynamics
of the system from the time-series of each unit (shown as a box). In practice,
these ideal experiments are not feasible and the researcher should infer causal
influence from real experimental observations where noise plagues each node.

for the network dynamical system, which could vary from
transient [13] to steady-state [17] features, studying causal
influence requires a series of ideal experiments where the
researcher can evaluate how specific manipulations at the
node-level translate into network-level performance. These
ideal experiments are typically based on an available mathe-
matical model that captures the interactions between the units
and their individual dynamics. However, seldom, do we have
complete knowledge about the network dynamical system,
whereby neither the dynamics of each individual unit nor the
topology of the interconnecting network are exactly known
to the researcher. In principle, a potential way around the
lack of a predictive mathematical model is to experimentally
probe the system through targeted interventions, but that
would require fine control over experimental variables that is
often unfeasible. Is it possible to identify key players in the
network from real experimental observations, without either
a calibrated mathematical model or the possibility to perform
experimental manipulations to support any manipulation of the
dynamics and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements the
growing body of technical literature that is shedding light on
the inner workings of dynamical systems from time-series,
without the need of a calibrated mathematical model. For
example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [4]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [22];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [23]. Not only
can statistically-principled methods help in the inference of
network topology, but also they can assist in the inference of
the network size and the discovery of hidden nodes [24].

Without a calibrated mathematical model or targeted ex-
perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observa-
tions where each node is plagued by noise. We focus on
synchronization problems, wherein the causal influence of
a node is defined as the extent to which adding noise at
that particular node affects the overall synchronization of
the entire network, that is, the vulnerability of the network

to a targeted disturbance. For a wide class of mathematical
models of network synchronization, we establish a closed-form
expression for the vulnerability, in terms of topological and
dynamic features of the network system. In agreement with
one’s expectation, a disturbance added to any of the nodes
affects the dynamics of all the other nodes in the network.
However, the extent of this interaction can be retrieved from
real experimental observations, in which noise is acting on
all nodes of the network, thereby affording the inference of
causal influence without either a calibrated model or tailored
experimental manipulations. Such a claim is anchored in the
discovery of a reciprocity principle for network dynamical
systems, which extends to this field of investigation a classical
tool in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our inference approach is applicable. In Section III, we study
the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second-order dynamics. In Section VI, we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of the study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled, linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k; F 2

Rn⇥n is a matrix that specifies the individual dynamics; lij
is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology
[27]; � 2 Rn⇥n is the inner coupling matrix constraining
the interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable. Model (1) is widely used to study collective dynamics
in the vicinity of a synchronization manifold [28], [29].

Using Kronecker algebra [30], (1) can be rewritten in
compact matrix form as

xk+1 = (IN ⌦ F � L ⌦ �)xk + (Q ⌦ B)⌘k, (2)

where IN is the identity matrix in RN , xk =⇥
(x1

k)
T, . . . , (xN

k )
T
⇤T, ⌘k =

⇥
(⌘1

k)
T . . . , (⌘n

k )
T
⇤T, and

Q = diag {q1, . . . , qN} 2 RN⇥N . The state of each unit may
not be fully measurable, such that we have limited access to
only the output yk = (IN ⌦ C)xk, where C 2 Rp⇥n.
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• Let us introduce the steady-state covariance matrix
=

• To study vulnerability to an attack at the 𝑖-th unit we would need 
to consider an ideal experiment where noise is only injected at 
unit 𝑖
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By introducing the average state x̄k =
PN

i=1 xi
k/N , we

define the disagreement vector ⇠k := xk � N ⌦ x̄k = (R ⌦
In)xk, where N is the vector of all ones in RN and R =

IN � T
N/N is the projector from RN to ?

N . Hence, the
disagreement dynamics is

⇠k+1 = (R ⌦ F � L ⌦ �)⇠k + RQ ⌦ B⌘k. (3)

We assume that the network topology is undirected so that
L is positive semi-definite symmetric matrix, whose elements
on the diagonal are non-negative and those off the diagonal are
non-positive [27]. We order the eigenvalues of L in an increas-
ing order, such that �1 = 0 is the eigenvalue corresponding
to the eigenvector v1 = /

p
N and 0  �2  . . . �N . In

general, the network can be weighted so that the value of
the elements off-the diagonal do not need to be zero or minus
one. We do not impose that F is stable, thereby encompassing
the classical consensus problems (F scalar and equal to one)
[31]. Instead, we hypothesize that F, L, and � are such that
the spectral radius of (R⌦F �L⌦�) is less than one, thereby
leading to an asymptotically stable disagreement dynamics in
the absence of noise. This will, in turn, lead to a covariance
matrix ⌅

Q
k = E[⇠k⇠T

k ] that will converge to a finite steady-state
matrix ⌅

Q
1 [32], where E[·] is used to denote expectation with

respect to the �-algebra associated with the added noise to an
otherwise deterministic system.

To compute closed-form expressions for the steady-state
covariance, we apply the similarity transformation (V T ⌦ In),
where V is assembled by juxtaposing column-wise the or-
thonormal eigenvectors of W . The modal dynamics ⇣k =

(V T ⌦ In)⇠k has the following block-diagonal form:

⇣k+1 = (V TRV ⌦ F � ⇤ ⌦ �)⇣k + (V TRQ ⌦ B)⌘k, (4)

where ⇤ = V TLV = diag{�1, . . . , �N}. Note that V TRV
is the identity matrix with the first element set to zero and
that V TR collates the eigenvectors of L row-wise, except
of the first row that is null. Utilizing (·)i to isolate the i-
th n-dimensional block of a vector in RnN , we have that (4)
becomes

(⇣k+1)1 = 0 (5a)

(⇣k+1)r = (F � �r�) (⇣k)r +

NX

s=1

qsvrsB⌘k (5b)

for r = 2, . . . , N , where vrs be the s-th component of the r-
th eigenvector of L, associated with eigenvalue �r. Equation
(5a) indicates that, irrespective of the added noise, the modal
dynamics along the first modal coordinate is identically equal
to zero, while the others in (5b) are modulated by the spectral
properties of L (through both the eigenvalues and eigenvec-
tors) and the internal dynamics.

III. VULNERABILITY OF THE NETWORK DYNAMICAL
SYSTEM TO TARGETED ATTACKS

To pinpoint the most influential or key nodes in the network,
we consider an ideal experiment where noise is only injected
at one unit, such that Q = i

T
i ; i is the i-th unit vector of

the natural basis of RN , specifying that the noise is selectively
injected only at the i-th node. We evaluate the impact of the

added noise on the network output by computing the steady-
state covariance of the entire disagreement dynamics ⌅

i
T
i1 =

limk!+1 E
⇥
⇠k⇠T

k

⇤
.

To this aim, we examine the modal dynamics in (5), which
has a simpler block-diagonal structure. Specifically, we start
by computing the steady-state covariance matrix e⌅ i
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of the modal dynamics, which admits the

following block-form solution in terms of the individual node
dynamics and of the network topology:
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where

Grs = (In2 � (F � �s�) ⌦ (F � �r�))
�1 (7)

is a function of the Laplacian eigenvalues, the individual
dynamics F , and the inner coupling matrix �.

Proof. Equation (6a) follows from (5a). Likewise, (6b) is
derived by setting qs = 0 for all s 6= i and qi = 1 in (5b), so
that

(⇣k+1)r = (F � �r�) (⇣k)r + vriB⌘k (8)

Hence, the generic rs-th block is governed by the following
dynamics:
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By taking the expectation of both sides of the equation, noting
that noise has zero mean, and recalling that the state at time
k is independent of noise at time k, we establish
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where each of these equations identifies the effect of noise
injected at the i-th node on the covariance of the r-th and s-th
modal coordinates. The thesis then follows.

Remark 1. A similar decomposition for the covariance of the
error dynamics in the continuous-time case is presented in
equations (23) and (24) in [17].

The overall effect of noise added at node i can be quantified
by computing the steady-state covariance matrix ⌅

1
k associ-

ated with the disagreement vector, similar to [17]–[19]. Such
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By introducing the average state x̄k =
PN

i=1 xi
k/N , we

define the disagreement vector ⇠k := xk � N ⌦ x̄k = (R ⌦
In)xk, where N is the vector of all ones in RN and R =

IN � T
N/N is the projector from RN to ?

N . Hence, the
disagreement dynamics is

⇠k+1 = (R ⌦ F � L ⌦ �)⇠k + RQ ⌦ B⌘k. (3)

We assume that the network topology is undirected so that
L is positive semi-definite symmetric matrix, whose elements
on the diagonal are non-negative and those off the diagonal are
non-positive [27]. We order the eigenvalues of L in an increas-
ing order, such that �1 = 0 is the eigenvalue corresponding
to the eigenvector v1 = /

p
N and 0  �2  . . . �N . In

general, the network can be weighted so that the value of
the elements off-the diagonal do not need to be zero or minus
one. We do not impose that F is stable, thereby encompassing
the classical consensus problems (F scalar and equal to one)
[31]. Instead, we hypothesize that F, L, and � are such that
the spectral radius of (R⌦F �L⌦�) is less than one, thereby
leading to an asymptotically stable disagreement dynamics in
the absence of noise. This will, in turn, lead to a covariance
matrix ⌅

Q
k = E[⇠k⇠T

k ] that will converge to a finite steady-state
matrix ⌅

Q
1 [32], where E[·] is used to denote expectation with

respect to the �-algebra associated with the added noise to an
otherwise deterministic system.

To compute closed-form expressions for the steady-state
covariance, we apply the similarity transformation (V T ⌦ In),
where V is assembled by juxtaposing column-wise the or-
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(V T ⌦ In)⇠k has the following block-diagonal form:
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where ⇤ = V TLV = diag{�1, . . . , �N}. Note that V TRV
is the identity matrix with the first element set to zero and
that V TR collates the eigenvectors of L row-wise, except
of the first row that is null. Utilizing (·)i to isolate the i-
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becomes

(⇣k+1)1 = 0 (5a)

(⇣k+1)r = (F � �r�) (⇣k)r +
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qsvrsB⌘k (5b)

for r = 2, . . . , N , where vrs be the s-th component of the r-
th eigenvector of L, associated with eigenvalue �r. Equation
(5a) indicates that, irrespective of the added noise, the modal
dynamics along the first modal coordinate is identically equal
to zero, while the others in (5b) are modulated by the spectral
properties of L (through both the eigenvalues and eigenvec-
tors) and the internal dynamics.
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where each of these equations identifies the effect of noise
injected at the i-th node on the covariance of the r-th and s-th
modal coordinates. The thesis then follows.
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error dynamics in the continuous-time case is presented in
equations (23) and (24) in [17].
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Proof. Equation (6a) follows from (5a). Likewise, (6b) is
derived by setting qs = 0 for all s 6= i and qi = 1 in (5b), so
that
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By taking the expectation of both sides of the equation, noting
that noise has zero mean, and recalling that the state at time
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where each of these equations identifies the effect of noise
injected at the i-th node on the covariance of the r-th and s-th
modal coordinates. The thesis then follows.

Remark 1. A similar decomposition for the covariance of the
error dynamics in the continuous-time case is presented in
equations (23) and (24) in [17].

The overall effect of noise added at node i can be quantified
by computing the steady-state covariance matrix ⌅

1
k associ-

ated with the disagreement vector, similar to [17]–[19]. Such
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• Let us introduce the steady-state covariance matrix
=

• To study vulnerability to an attack at the 𝑖-th unit we would need 
to consider an ideal experiment where noise is only injected at 
unit 𝑖

• Vulnerability could be then quantified as

where weights the relevance of each
node in the network;

• Unfortunately, from time-series of the real experiment we can 
only estimate and not      
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By introducing the average state x̄k =
PN

i=1 xi
k/N , we

define the disagreement vector ⇠k := xk � N ⌦ x̄k = (R ⌦
In)xk, where N is the vector of all ones in RN and R =

IN � T
N/N is the projector from RN to ?

N . Hence, the
disagreement dynamics is

⇠k+1 = (R ⌦ F � L ⌦ �)⇠k + RQ ⌦ B⌘k. (3)

We assume that the network topology is undirected so that
L is positive semi-definite symmetric matrix, whose elements
on the diagonal are non-negative and those off the diagonal are
non-positive [27]. We order the eigenvalues of L in an increas-
ing order, such that �1 = 0 is the eigenvalue corresponding
to the eigenvector v1 = /

p
N and 0  �2  . . . �N . In

general, the network can be weighted so that the value of
the elements off-the diagonal do not need to be zero or minus
one. We do not impose that F is stable, thereby encompassing
the classical consensus problems (F scalar and equal to one)
[31]. Instead, we hypothesize that F, L, and � are such that
the spectral radius of (R⌦F �L⌦�) is less than one, thereby
leading to an asymptotically stable disagreement dynamics in
the absence of noise. This will, in turn, lead to a covariance
matrix ⌅

Q
k = E[⇠k⇠T

k ] that will converge to a finite steady-state
matrix ⌅

Q
1 [32], where E[·] is used to denote expectation with

respect to the �-algebra associated with the added noise to an
otherwise deterministic system.

To compute closed-form expressions for the steady-state
covariance, we apply the similarity transformation (V T ⌦ In),
where V is assembled by juxtaposing column-wise the or-
thonormal eigenvectors of W . The modal dynamics ⇣k =

(V T ⌦ In)⇠k has the following block-diagonal form:

⇣k+1 = (V TRV ⌦ F � ⇤ ⌦ �)⇣k + (V TRQ ⌦ B)⌘k, (4)

where ⇤ = V TLV = diag{�1, . . . , �N}. Note that V TRV
is the identity matrix with the first element set to zero and
that V TR collates the eigenvectors of L row-wise, except
of the first row that is null. Utilizing (·)i to isolate the i-
th n-dimensional block of a vector in RnN , we have that (4)
becomes

(⇣k+1)1 = 0 (5a)

(⇣k+1)r = (F � �r�) (⇣k)r +

NX

s=1

qsvrsB⌘k (5b)

for r = 2, . . . , N , where vrs be the s-th component of the r-
th eigenvector of L, associated with eigenvalue �r. Equation
(5a) indicates that, irrespective of the added noise, the modal
dynamics along the first modal coordinate is identically equal
to zero, while the others in (5b) are modulated by the spectral
properties of L (through both the eigenvalues and eigenvec-
tors) and the internal dynamics.
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where
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is a function of the Laplacian eigenvalues, the individual
dynamics F , and the inner coupling matrix �.

Proof. Equation (6a) follows from (5a). Likewise, (6b) is
derived by setting qs = 0 for all s 6= i and qi = 1 in (5b), so
that
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where each of these equations identifies the effect of noise
injected at the i-th node on the covariance of the r-th and s-th
modal coordinates. The thesis then follows.

Remark 1. A similar decomposition for the covariance of the
error dynamics in the continuous-time case is presented in
equations (23) and (24) in [17].

The overall effect of noise added at node i can be quantified
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is the identity matrix with the first element set to zero and
that V TR collates the eigenvectors of L row-wise, except
of the first row that is null. Utilizing (·)i to isolate the i-
th n-dimensional block of a vector in RnN , we have that (4)
becomes

(⇣k+1)1 = 0 (5a)

(⇣k+1)r = (F � �r�) (⇣k)r +

NX

s=1

qsvrsB⌘k (5b)

for r = 2, . . . , N , where vrs be the s-th component of the r-
th eigenvector of L, associated with eigenvalue �r. Equation
(5a) indicates that, irrespective of the added noise, the modal
dynamics along the first modal coordinate is identically equal
to zero, while the others in (5b) are modulated by the spectral
properties of L (through both the eigenvalues and eigenvec-
tors) and the internal dynamics.

III. VULNERABILITY OF THE NETWORK DYNAMICAL
SYSTEM TO TARGETED ATTACKS

To pinpoint the most influential or key nodes in the network,
we consider an ideal experiment where noise is only injected
at one unit, such that Q = i

T
i ; i is the i-th unit vector of

the natural basis of RN , specifying that the noise is selectively
injected only at the i-th node. We evaluate the impact of the

added noise on the network output by computing the steady-
state covariance of the entire disagreement dynamics ⌅
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i1 =

limk!+1 E
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⇠k⇠T

k

⇤
.

To this aim, we examine the modal dynamics in (5), which
has a simpler block-diagonal structure. Specifically, we start
by computing the steady-state covariance matrix e⌅ i
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⇥
⇣k⇣T

k

⇤
of the modal dynamics, which admits the

following block-form solution in terms of the individual node
dynamics and of the network topology:

Lemma 1. Let vsr be the r-th component of the s-th eigen-
vector of L, associated with eigenvalue �s. The steady-state
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where

Grs = (In2 � (F � �s�) ⌦ (F � �r�))
�1 (7)

is a function of the Laplacian eigenvalues, the individual
dynamics F , and the inner coupling matrix �.

Proof. Equation (6a) follows from (5a). Likewise, (6b) is
derived by setting qs = 0 for all s 6= i and qi = 1 in (5b), so
that

(⇣k+1)r = (F � �r�) (⇣k)r + vriB⌘k (8)

Hence, the generic rs-th block is governed by the following
dynamics:
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By taking the expectation of both sides of the equation, noting
that noise has zero mean, and recalling that the state at time
k is independent of noise at time k, we establish

⇣
e⌅ i

T
i

k+1

⌘

rs
= (F � �r�)

⇣
e⌅ i

T
i1

⌘

rs
(F � �s�)

T

+ vrivsiB⌃⌘BT, r, s = 2, . . . , N,
(10)

Equation (10) can be transformed into a linear system by
matrix vectorization, whose solution for k ! +1 is equal to
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where each of these equations identifies the effect of noise
injected at the i-th node on the covariance of the r-th and s-th
modal coordinates. The thesis then follows.

Remark 1. A similar decomposition for the covariance of the
error dynamics in the continuous-time case is presented in
equations (23) and (24) in [17].

The overall effect of noise added at node i can be quantified
by computing the steady-state covariance matrix ⌅

1
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ated with the disagreement vector, similar to [17]–[19]. Such
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a matrix is given block-wise in terms of the modal matrices
in Lemma 1, as
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T
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We propose to study causal influence in terms of the vulner-
ability of the entire system to noise injected at the i-th node,
which we measure through the following vulnerability index:

Vul(i, M) = Tr

h
(MT ⌦ C)⌅

i
T
i1 (M ⌦ CT

)

i
, (13)

where M = diag {m1, . . . , mN} 2 RN⇥N is a diagonal
matrix that is used to weight the relevance of each network
node. For example, M can be chosen with larger diagonal
entries corresponding to nodes which are deemed to be more
critical in the network, so that their covariance must be
contained, potentially at the expense of the other nodes. If
M = IN , all nodes are equally treated in the definition
of the vulnerability index; this choice is typically employed
in the formulation of performance matrices for the study of
leadership and robustness in network control systems [17]–
[19].

We establish the following result, highlighting the interplay
between the individual dynamics and the Laplacian eigenval-
ues and eigenvectors on vulnerability:

Proposition 1. The vulnerability index for node i in equation
(13) can be expressed as

Vul(i, M) =

NX
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�
,

(14)

where the spectral properties of L enter matrix Grs in (7).

Proof. To obtain the vulnerability index, we need to compute
the trace of

⌥M (i) = (MT ⌦ C)⌅
i

T
i1 (M ⌦ CT

), (15)

which is the sum of the traces of its N blocks along the
diagonal
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. The generic j-th block
takes the form
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From Lemma 1 and equation (12), we establish
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Combining (16) and (17) yields
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Applying the trace operator and summing for j that goes from
1 to N yields the claim.

Remark 2. Equation (17) confirms the intuition that injecting
noise at one node influences the steady-state covariance of any

other node. The extent of this effect depends on the network
topology and the individual dynamics, similar to observations
for a wide range of perturbations in biological networks [33].
In particular, the effect of noise injected at node i on node j is
controlled by the i- and j-th components of all the Laplacian
eigenvectors (except of the first ones), the entire Laplacian
spectrum, and internal dynamics.
Remark 3. When all the nodes are equivalently weighted in
the vulnerability index (M = IN ), equation (14) reduces to

Vul(i, IN ) =
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ri Tr
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,

(19)
where we leveraged the fact that the eigenvectors are orthonor-
mal. This equation shows that the effect of noise injected
at node i is modulated by all the Laplacian eigenvalues
(entering the equation through Grr), each weighted by the
i-th component of the corresponding eigenvector.

IV. INFERENCE OF CAUSAL INFLUENCE FROM REAL
EXPERIMENTAL OBSERVATIONS

In a real experiment, it is impossible to manipulate the
pattern of the added noise, as required by the ideal experiments
underlying the computation of the vulnerability index (13). In
general, noise in a real experiment will affect all the nodes in
the network, rather than a single one. Likewise, the researcher
has no knowledge about the network topology and the individ-
ual dynamics, thereby hindering any attempt to estimate the
vulnerability index in (13). The researcher has only access to
the time-series of the individual units, from which he/she could
compute the covariance matrix Y Q

k = limt!+1 E
⇥
ykyT

k

⇤

of the network output yk. Here, we demonstrate that such a
matrix could suffice to infer salient information about network
vulnerability, that is, to pinpoint the nodes from which a
targeted attack would produce the largest effect on the overall
system dynamics.

The reason why the real and the ideal experiments can
be reconciled is due to the two classical principles in circuit
theory [34] that carry over to the context of network dynamical
systems. First, due to the linearity of the model, the response
of the system to noise injected at all nodes can be obtained
as the sum of the responses to noise individually injected at
each of the nodes. Hence, the real experiment can be regarded
as the superposition of N ideal experiments, in which noise
is selectively injected at a different node:

⌅
Q
1 =

NX

j=1

q2
j ⌅

j
T
j

1 . (20)

Second, the principle of reciprocity extends to network dy-
namical systems, whereby the effect of noise injected at node
i on node j is equivalent to the effect of noise injected at node
j on node i.

Proposition 2 (Reciprocity principle). For all i, j = 1, . . . , N ,
⇣
⌅

i
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✓
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◆
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(21)

Proof. The claim follows by simply noting that swapping
subscripts i and j in (17) does not change the result.
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Ideal experiment Real experiment

Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.
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We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as
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where xi
k 2 Rn is the state of the i-the unit at time k;

F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as
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each unit may not be fully measurable, such that we have
limited access to only to the output yk = (IN ⌦ C)xk, where
C 2 Rp⇥n.
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
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L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1
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are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as
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limited access to only to the output yk = (IN ⌦ C)xk, where
C 2 Rp⇥n.

Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbation at a
selected unit ( circled in red), and observes its effect on the overall dynamics
of the system from the time-series of each unit (shown as a box). In practice,
these ideal experiments are not feasible and the researcher should infer causal
influence from real experimental observations where noise plagues each node.

for the network dynamical system, which could vary from
transient [13] to steady-state [17] features, studying causal
influence requires a series of ideal experiments where the
researcher can evaluate how specific manipulations at the
node-level translate into network-level performance. These
ideal experiments are typically based on an available mathe-
matical model that captures the interactions between the units
and their individual dynamics. However, seldom, do we have
complete knowledge about the network dynamical system,
whereby neither the dynamics of each individual unit nor the
topology of the interconnecting network are exactly known
to the researcher. In principle, a potential way around the
lack of a predictive mathematical model is to experimentally
probe the system through targeted interventions, but that
would require fine control over experimental variables that is
often unfeasible. Is it possible to identify key players in the
network from real experimental observations, without either
a calibrated mathematical model or the possibility to perform
experimental manipulations to support any manipulation of the
dynamics and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements the
growing body of technical literature that is shedding light on
the inner workings of dynamical systems from time-series,
without the need of a calibrated mathematical model. For
example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [4]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [22];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [23]. Not only
can statistically-principled methods help in the inference of
network topology, but also they can assist in the inference of
the network size and the discovery of hidden nodes [24].

Without a calibrated mathematical model or targeted ex-
perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observa-
tions where each node is plagued by noise. We focus on
synchronization problems, wherein the causal influence of
a node is defined as the extent to which adding noise at
that particular node affects the overall synchronization of
the entire network, that is, the vulnerability of the network

to a targeted disturbance. For a wide class of mathematical
models of network synchronization, we establish a closed-form
expression for the vulnerability, in terms of topological and
dynamic features of the network system. In agreement with
one’s expectation, a disturbance added to any of the nodes
affects the dynamics of all the other nodes in the network.
However, the extent of this interaction can be retrieved from
real experimental observations, in which noise is acting on
all nodes of the network, thereby affording the inference of
causal influence without either a calibrated model or tailored
experimental manipulations. Such a claim is anchored in the
discovery of a reciprocity principle for network dynamical
systems, which extends to this field of investigation a classical
tool in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section III,
we present the class of synchronization problems for which
our inference approach is applicable. In Section IV, we study
the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section V, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section VI, we illustrate the validity of our approach
on scalar and second-order dynamics. In Section VII, we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VIII summarizes the main conclusions
of the study and identifies directions for further research.
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III. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled, linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k; F 2

Rn⇥n is a matrix that specifies the individual dynamics; lij
is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology
[27]; � 2 Rn⇥n is the inner coupling matrix constraining
the interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable. Model (1) is widely used to study collective dynamics
in the vicinity of a synchronization manifold [28], [29].

Using Kronecker algebra [30], (1) can be rewritten in
compact matrix form as

xk+1 = (IN ⌦ F � L ⌦ �)xk + (Q ⌦ B)⌘k, (2)
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
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where xi
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F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1
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are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.
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are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbation at a
selected unit ( circled in red), and observes its effect on the overall dynamics
of the system from the time-series of each unit (shown as a box). In practice,
these ideal experiments are not feasible and the researcher should infer causal
influence from real experimental observations where noise plagues each node.

for the network dynamical system, which could vary from
transient [13] to steady-state [17] features, studying causal
influence requires a series of ideal experiments where the
researcher can evaluate how specific manipulations at the
node-level translate into network-level performance. These
ideal experiments are typically based on an available mathe-
matical model that captures the interactions between the units
and their individual dynamics. However, seldom, do we have
complete knowledge about the network dynamical system,
whereby neither the dynamics of each individual unit nor the
topology of the interconnecting network are exactly known
to the researcher. In principle, a potential way around the
lack of a predictive mathematical model is to experimentally
probe the system through targeted interventions, but that
would require fine control over experimental variables that is
often unfeasible. Is it possible to identify key players in the
network from real experimental observations, without either
a calibrated mathematical model or the possibility to perform
experimental manipulations to support any manipulation of the
dynamics and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements the
growing body of technical literature that is shedding light on
the inner workings of dynamical systems from time-series,
without the need of a calibrated mathematical model. For
example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [4]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [22];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [23]. Not only
can statistically-principled methods help in the inference of
network topology, but also they can assist in the inference of
the network size and the discovery of hidden nodes [24].

Without a calibrated mathematical model or targeted ex-
perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observa-
tions where each node is plagued by noise. We focus on
synchronization problems, wherein the causal influence of
a node is defined as the extent to which adding noise at
that particular node affects the overall synchronization of
the entire network, that is, the vulnerability of the network

to a targeted disturbance. For a wide class of mathematical
models of network synchronization, we establish a closed-form
expression for the vulnerability, in terms of topological and
dynamic features of the network system. In agreement with
one’s expectation, a disturbance added to any of the nodes
affects the dynamics of all the other nodes in the network.
However, the extent of this interaction can be retrieved from
real experimental observations, in which noise is acting on
all nodes of the network, thereby affording the inference of
causal influence without either a calibrated model or tailored
experimental manipulations. Such a claim is anchored in the
discovery of a reciprocity principle for network dynamical
systems, which extends to this field of investigation a classical
tool in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section III,
we present the class of synchronization problems for which
our inference approach is applicable. In Section IV, we study
the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section V, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section VI, we illustrate the validity of our approach
on scalar and second-order dynamics. In Section VII, we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VIII summarizes the main conclusions
of the study and identifies directions for further research.
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1. From the model linearity, the response of the system to noise 
injected at all nodes can be obtained as the sum of the 
responses to noise individually injected at each node
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• Ideal and real experiments can be reconciled due to two classical 
principles in circuit theory, the superposition and reciprocity 
principles

1. From the model linearity, the response of the system to noise 
injected at all nodes can be obtained as the sum of the 
responses to noise individually injected at each node

2. Being the network undirected, we proved that the reciprocity 
principle carries over to the context of network dynamical 
systems:
The effect of noise injected at node 𝑖 on node 𝑗 is equivalent 

to the effect of noise injected at node 𝑗 on node 𝑖
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k;

F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as

xk+1 = (IN ⌦ F � L ⌦ �)xk + (Q ⌦ B)⌘k, (2)

where IN is the identity matrix in RN , xk =⇥
(x1

k)
T, . . . , (xN

k )
T
⇤T, ⌘k =

⇥
(⌘1

k)
T . . . , (⌘n

k )
T
⇤T, and

Q = diag {q1, . . . , qN} 2 RN⇥N . In general, the state of
each unit may not be fully measurable, such that we have
limited access to only to the output yk = (IN ⌦ C)xk, where
C 2 Rp⇥n.
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].
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perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.
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We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as
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where xi
k 2 Rn is the state of the i-the unit at time k;
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L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1
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are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
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Using Kronecker algebra [27], (1) can be rewritten in
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbation at a
selected unit ( circled in red), and observes its effect on the overall dynamics
of the system from the time-series of each unit (shown as a box). In practice,
these ideal experiments are not feasible and the researcher should infer causal
influence from real experimental observations where noise plagues each node.

for the network dynamical system, which could vary from
transient [13] to steady-state [17] features, studying causal
influence requires a series of ideal experiments where the
researcher can evaluate how specific manipulations at the
node-level translate into network-level performance. These
ideal experiments are typically based on an available mathe-
matical model that captures the interactions between the units
and their individual dynamics. However, seldom, do we have
complete knowledge about the network dynamical system,
whereby neither the dynamics of each individual unit nor the
topology of the interconnecting network are exactly known
to the researcher. In principle, a potential way around the
lack of a predictive mathematical model is to experimentally
probe the system through targeted interventions, but that
would require fine control over experimental variables that is
often unfeasible. Is it possible to identify key players in the
network from real experimental observations, without either
a calibrated mathematical model or the possibility to perform
experimental manipulations to support any manipulation of the
dynamics and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements the
growing body of technical literature that is shedding light on
the inner workings of dynamical systems from time-series,
without the need of a calibrated mathematical model. For
example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [4]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [22];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [23]. Not only
can statistically-principled methods help in the inference of
network topology, but also they can assist in the inference of
the network size and the discovery of hidden nodes [24].

Without a calibrated mathematical model or targeted ex-
perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observa-
tions where each node is plagued by noise. We focus on
synchronization problems, wherein the causal influence of
a node is defined as the extent to which adding noise at
that particular node affects the overall synchronization of
the entire network, that is, the vulnerability of the network

to a targeted disturbance. For a wide class of mathematical
models of network synchronization, we establish a closed-form
expression for the vulnerability, in terms of topological and
dynamic features of the network system. In agreement with
one’s expectation, a disturbance added to any of the nodes
affects the dynamics of all the other nodes in the network.
However, the extent of this interaction can be retrieved from
real experimental observations, in which noise is acting on
all nodes of the network, thereby affording the inference of
causal influence without either a calibrated model or tailored
experimental manipulations. Such a claim is anchored in the
discovery of a reciprocity principle for network dynamical
systems, which extends to this field of investigation a classical
tool in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section III,
we present the class of synchronization problems for which
our inference approach is applicable. In Section IV, we study
the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section V, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section VI, we illustrate the validity of our approach
on scalar and second-order dynamics. In Section VII, we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VIII summarizes the main conclusions
of the study and identifies directions for further research.
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III. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled, linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k; F 2

Rn⇥n is a matrix that specifies the individual dynamics; lij
is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology
[27]; � 2 Rn⇥n is the inner coupling matrix constraining
the interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable. Model (1) is widely used to study collective dynamics
in the vicinity of a synchronization manifold [28], [29].

Using Kronecker algebra [30], (1) can be rewritten in
compact matrix form as

xk+1 = (IN ⌦ F � L ⌦ �)xk + (Q ⌦ B)⌘k, (2)
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• By applying the superposition and reciprocity principles, we can 
exactly infer vulnerability when           

where

• Vulnerability can be then estimated from the sample covariance 
matrix of the network output 

• The result can be extended to the case of non diagonal
• When instead      and     are different, lower and upper bound for 

the vulnerability can be computed instead 
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k;

F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as

xk+1 = (IN ⌦ F � L ⌦ �)xk + (Q ⌦ B)⌘k, (2)

where IN is the identity matrix in RN , xk =⇥
(x1

k)
T, . . . , (xN

k )
T
⇤T, ⌘k =

⇥
(⌘1
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T . . . , (⌘n
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⇤T, and

Q = diag {q1, . . . , qN} 2 RN⇥N . In general, the state of
each unit may not be fully measurable, such that we have
limited access to only to the output yk = (IN ⌦ C)xk, where
C 2 Rp⇥n.
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as
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where xi
k 2 Rn is the state of the i-the unit at time k;

F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbation at a
selected unit ( circled in red), and observes its effect on the overall dynamics
of the system from the time-series of each unit (shown as a box). In practice,
these ideal experiments are not feasible and the researcher should infer causal
influence from real experimental observations where noise plagues each node.

for the network dynamical system, which could vary from
transient [13] to steady-state [17] features, studying causal
influence requires a series of ideal experiments where the
researcher can evaluate how specific manipulations at the
node-level translate into network-level performance. These
ideal experiments are typically based on an available mathe-
matical model that captures the interactions between the units
and their individual dynamics. However, seldom, do we have
complete knowledge about the network dynamical system,
whereby neither the dynamics of each individual unit nor the
topology of the interconnecting network are exactly known
to the researcher. In principle, a potential way around the
lack of a predictive mathematical model is to experimentally
probe the system through targeted interventions, but that
would require fine control over experimental variables that is
often unfeasible. Is it possible to identify key players in the
network from real experimental observations, without either
a calibrated mathematical model or the possibility to perform
experimental manipulations to support any manipulation of the
dynamics and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements the
growing body of technical literature that is shedding light on
the inner workings of dynamical systems from time-series,
without the need of a calibrated mathematical model. For
example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [4]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [22];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [23]. Not only
can statistically-principled methods help in the inference of
network topology, but also they can assist in the inference of
the network size and the discovery of hidden nodes [24].

Without a calibrated mathematical model or targeted ex-
perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observa-
tions where each node is plagued by noise. We focus on
synchronization problems, wherein the causal influence of
a node is defined as the extent to which adding noise at
that particular node affects the overall synchronization of
the entire network, that is, the vulnerability of the network

to a targeted disturbance. For a wide class of mathematical
models of network synchronization, we establish a closed-form
expression for the vulnerability, in terms of topological and
dynamic features of the network system. In agreement with
one’s expectation, a disturbance added to any of the nodes
affects the dynamics of all the other nodes in the network.
However, the extent of this interaction can be retrieved from
real experimental observations, in which noise is acting on
all nodes of the network, thereby affording the inference of
causal influence without either a calibrated model or tailored
experimental manipulations. Such a claim is anchored in the
discovery of a reciprocity principle for network dynamical
systems, which extends to this field of investigation a classical
tool in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section III,
we present the class of synchronization problems for which
our inference approach is applicable. In Section IV, we study
the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section V, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section VI, we illustrate the validity of our approach
on scalar and second-order dynamics. In Section VII, we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VIII summarizes the main conclusions
of the study and identifies directions for further research.
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III. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled, linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k; F 2

Rn⇥n is a matrix that specifies the individual dynamics; lij
is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology
[27]; � 2 Rn⇥n is the inner coupling matrix constraining
the interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable. Model (1) is widely used to study collective dynamics
in the vicinity of a synchronization manifold [28], [29].
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Proof. The claim follows by simply noting that swapping
subscripts i and j in (17) does not change the result.

By applying the linearity and the reciprocity principles,
we can exactly infer the vulnerability index when matrix M ,
weighting the relevance of each node, coincides with matrix
Q, measuring the strength of the noise added to the network
nodes. In this case, the vulnerability index for each node can
be assessed from the covariances associated with the network
output yk, as demonstrated in the following proposition:

Proposition 3. Let us denote ⌃
Q
1 = limt!+1 E[ykyT

k ]. If
M = Q, then, for all i = 1, . . . , N , the vulnerability index
defined in (13) can be computed as
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Proof. We start by observing that, from the superposition
principle expressed in (20), the i-th diagonal block of ⌅
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Using the reciprocity principle in Proposition 2, we have
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for all i = 1, . . . , N .

Next, note that
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and, therefore,
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Combining (24) and (26) yields
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Since M = Q, applying the trace operator and using Propo-
sition 1, one obtains that, for all i = 1, . . . , N ,

Tr
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Q
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= Vul(i, M). (28)

Remark 4. The claim of Proposition 3 can be generalized
to the case when Q and M are full matrices, with elements
outside the diagonal. Equation (28) would carry over in this
more general case, provided that Q = M . The technical
proof is rather different, whereby the elegant application of

the reciprocity principle would not be sufficient; the proof of
this claim is in the Appendix.
Remark 5. The case considered in Remark 4 of Q and M
non-diagonal matrices can be elaborated further by examining
the instance in which Q commutes with the Laplacian matrix
of the network (that is, [Q, W ] = 0). Under this assumption, it
is possible to construct lower and upper bounds for Vul(i, IN )

in terms of the spectral properties of Q,
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Q
1(R ⌦ In)
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ii
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2

,
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ii

✓2
max

.

(29)

where ✓2 and ✓max are the smallest non-zero and largest
eigenvalues of Q. For Q = M = IN , the two bounds
coincide and they match (22). The proof of this claim is in
the Appendix.

VI. ILLUSTRATION OF THE APPROACH ON SYNTHETIC
DATA

We study the 16-node network examined in [18], whose
nodes have degree varying from one to six and 0.609  �i 
8.03 for i = 2, . . . , N . When we work with real data, we
have no model of the network dynamical system and we must
simply rely on the time-series of the nodes, under the influence
of standard white Gaussian noise (⌃⌘ = 1).

Assuming to have access to T = 1, 000 time-steps, we
calculate the time-series of the disagreement of each of the
16 nodes with respect to the average state. We repeat the
analysis 100 times from randomly generated initial conditions.
From these time-series, we compute the covariances of the
disagreement dynamics, which are required to estimate the vul-
nerability metric through (22) in Proposition 3 or to establish
conservative bounds via (29). Specifically, for each realization,
we compute sample means for all quantities and we then
use these quantities to quantify variability across realizations
through standard deviation. For clarity, we use a superimposed
bar to indicate the estimation of the covariances from time-
series, and the consequent inferences on vulnerability.

A. Scalar dynamics
We start the analysis with scalar dynamics, with F = ↵,

� = �, B = 1, C = 1, for which the disagreement dynamics
is asymptotically stable if | ↵ � ��i |< 1 for i = 2, . . . , N
and the matrix Grr in (6) becomes

Grr =
1

1 � (↵ + �wr)
2 . (30)

Hence, the vulnerability index (13) for M = Q = IN is

Vul(i, IN ) =

NX

r=2

v2
ri

1 � (↵ + �wr)
2 . (31)

We select two possible combinations for (↵, �), which beget
the same spectral radius of (R ⌦ F � L ⌦ �): (1.000, 0.159)

and (�0.100, 0.100). The first configuration corresponds to the
classical consensus problem with marginally stable individual
dynamics, while the second one has a stable, yet oscillating,

2

2

Ideal experiment Real experiment

Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k;

F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as

xk+1 = (IN ⌦ F � L ⌦ �)xk + (Q ⌦ B)⌘k, (2)

where IN is the identity matrix in RN , xk =⇥
(x1

k)
T, . . . , (xN

k )
T
⇤T, ⌘k =

⇥
(⌘1

k)
T . . . , (⌘n

k )
T
⇤T, and

Q = diag {q1, . . . , qN} 2 RN⇥N . In general, the state of
each unit may not be fully measurable, such that we have
limited access to only to the output yk = (IN ⌦ C)xk, where
C 2 Rp⇥n.
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k;

F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as

xk+1 = (IN ⌦ F � L ⌦ �)xk + (Q ⌦ B)⌘k, (2)

where IN is the identity matrix in RN , xk =⇥
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⇤T, ⌘k =
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Q = diag {q1, . . . , qN} 2 RN⇥N . In general, the state of
each unit may not be fully measurable, such that we have
limited access to only to the output yk = (IN ⌦ C)xk, where
C 2 Rp⇥n.

Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbation at a
selected unit ( circled in red), and observes its effect on the overall dynamics
of the system from the time-series of each unit (shown as a box). In practice,
these ideal experiments are not feasible and the researcher should infer causal
influence from real experimental observations where noise plagues each node.

for the network dynamical system, which could vary from
transient [13] to steady-state [17] features, studying causal
influence requires a series of ideal experiments where the
researcher can evaluate how specific manipulations at the
node-level translate into network-level performance. These
ideal experiments are typically based on an available mathe-
matical model that captures the interactions between the units
and their individual dynamics. However, seldom, do we have
complete knowledge about the network dynamical system,
whereby neither the dynamics of each individual unit nor the
topology of the interconnecting network are exactly known
to the researcher. In principle, a potential way around the
lack of a predictive mathematical model is to experimentally
probe the system through targeted interventions, but that
would require fine control over experimental variables that is
often unfeasible. Is it possible to identify key players in the
network from real experimental observations, without either
a calibrated mathematical model or the possibility to perform
experimental manipulations to support any manipulation of the
dynamics and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements the
growing body of technical literature that is shedding light on
the inner workings of dynamical systems from time-series,
without the need of a calibrated mathematical model. For
example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [4]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [22];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [23]. Not only
can statistically-principled methods help in the inference of
network topology, but also they can assist in the inference of
the network size and the discovery of hidden nodes [24].

Without a calibrated mathematical model or targeted ex-
perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observa-
tions where each node is plagued by noise. We focus on
synchronization problems, wherein the causal influence of
a node is defined as the extent to which adding noise at
that particular node affects the overall synchronization of
the entire network, that is, the vulnerability of the network

to a targeted disturbance. For a wide class of mathematical
models of network synchronization, we establish a closed-form
expression for the vulnerability, in terms of topological and
dynamic features of the network system. In agreement with
one’s expectation, a disturbance added to any of the nodes
affects the dynamics of all the other nodes in the network.
However, the extent of this interaction can be retrieved from
real experimental observations, in which noise is acting on
all nodes of the network, thereby affording the inference of
causal influence without either a calibrated model or tailored
experimental manipulations. Such a claim is anchored in the
discovery of a reciprocity principle for network dynamical
systems, which extends to this field of investigation a classical
tool in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section III,
we present the class of synchronization problems for which
our inference approach is applicable. In Section IV, we study
the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section V, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section VI, we illustrate the validity of our approach
on scalar and second-order dynamics. In Section VII, we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VIII summarizes the main conclusions
of the study and identifies directions for further research.
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III. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled, linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k; F 2

Rn⇥n is a matrix that specifies the individual dynamics; lij
is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology
[27]; � 2 Rn⇥n is the inner coupling matrix constraining
the interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].
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Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.
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F 2 Rn⇥n is a matrix that specifies the individual dynamics;
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L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
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are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
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limited access to only to the output yk = (IN ⌦ C)xk, where
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as
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F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1
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are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbation at a
selected unit ( circled in red), and observes its effect on the overall dynamics
of the system from the time-series of each unit (shown as a box). In practice,
these ideal experiments are not feasible and the researcher should infer causal
influence from real experimental observations where noise plagues each node.

for the network dynamical system, which could vary from
transient [13] to steady-state [17] features, studying causal
influence requires a series of ideal experiments where the
researcher can evaluate how specific manipulations at the
node-level translate into network-level performance. These
ideal experiments are typically based on an available mathe-
matical model that captures the interactions between the units
and their individual dynamics. However, seldom, do we have
complete knowledge about the network dynamical system,
whereby neither the dynamics of each individual unit nor the
topology of the interconnecting network are exactly known
to the researcher. In principle, a potential way around the
lack of a predictive mathematical model is to experimentally
probe the system through targeted interventions, but that
would require fine control over experimental variables that is
often unfeasible. Is it possible to identify key players in the
network from real experimental observations, without either
a calibrated mathematical model or the possibility to perform
experimental manipulations to support any manipulation of the
dynamics and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements the
growing body of technical literature that is shedding light on
the inner workings of dynamical systems from time-series,
without the need of a calibrated mathematical model. For
example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [4]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [22];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [23]. Not only
can statistically-principled methods help in the inference of
network topology, but also they can assist in the inference of
the network size and the discovery of hidden nodes [24].

Without a calibrated mathematical model or targeted ex-
perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observa-
tions where each node is plagued by noise. We focus on
synchronization problems, wherein the causal influence of
a node is defined as the extent to which adding noise at
that particular node affects the overall synchronization of
the entire network, that is, the vulnerability of the network

to a targeted disturbance. For a wide class of mathematical
models of network synchronization, we establish a closed-form
expression for the vulnerability, in terms of topological and
dynamic features of the network system. In agreement with
one’s expectation, a disturbance added to any of the nodes
affects the dynamics of all the other nodes in the network.
However, the extent of this interaction can be retrieved from
real experimental observations, in which noise is acting on
all nodes of the network, thereby affording the inference of
causal influence without either a calibrated model or tailored
experimental manipulations. Such a claim is anchored in the
discovery of a reciprocity principle for network dynamical
systems, which extends to this field of investigation a classical
tool in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section III,
we present the class of synchronization problems for which
our inference approach is applicable. In Section IV, we study
the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section V, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section VI, we illustrate the validity of our approach
on scalar and second-order dynamics. In Section VII, we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VIII summarizes the main conclusions
of the study and identifies directions for further research.
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III. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled, linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k; F 2

Rn⇥n is a matrix that specifies the individual dynamics; lij
is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology
[27]; � 2 Rn⇥n is the inner coupling matrix constraining
the interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable. Model (1) is widely used to study collective dynamics
in the vicinity of a synchronization manifold [28], [29].
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.
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We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
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where xi
k 2 Rn is the state of the i-the unit at time k;

F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as

xk+1 = (IN ⌦ F � L ⌦ �)xk + (Q ⌦ B)⌘k, (2)
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each unit may not be fully measurable, such that we have
limited access to only to the output yk = (IN ⌦ C)xk, where
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.
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of the i-th unit can be written as
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L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1
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are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbation at a
selected unit ( circled in red), and observes its effect on the overall dynamics
of the system from the time-series of each unit (shown as a box). In practice,
these ideal experiments are not feasible and the researcher should infer causal
influence from real experimental observations where noise plagues each node.

for the network dynamical system, which could vary from
transient [13] to steady-state [17] features, studying causal
influence requires a series of ideal experiments where the
researcher can evaluate how specific manipulations at the
node-level translate into network-level performance. These
ideal experiments are typically based on an available mathe-
matical model that captures the interactions between the units
and their individual dynamics. However, seldom, do we have
complete knowledge about the network dynamical system,
whereby neither the dynamics of each individual unit nor the
topology of the interconnecting network are exactly known
to the researcher. In principle, a potential way around the
lack of a predictive mathematical model is to experimentally
probe the system through targeted interventions, but that
would require fine control over experimental variables that is
often unfeasible. Is it possible to identify key players in the
network from real experimental observations, without either
a calibrated mathematical model or the possibility to perform
experimental manipulations to support any manipulation of the
dynamics and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements the
growing body of technical literature that is shedding light on
the inner workings of dynamical systems from time-series,
without the need of a calibrated mathematical model. For
example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [4]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [22];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [23]. Not only
can statistically-principled methods help in the inference of
network topology, but also they can assist in the inference of
the network size and the discovery of hidden nodes [24].

Without a calibrated mathematical model or targeted ex-
perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observa-
tions where each node is plagued by noise. We focus on
synchronization problems, wherein the causal influence of
a node is defined as the extent to which adding noise at
that particular node affects the overall synchronization of
the entire network, that is, the vulnerability of the network

to a targeted disturbance. For a wide class of mathematical
models of network synchronization, we establish a closed-form
expression for the vulnerability, in terms of topological and
dynamic features of the network system. In agreement with
one’s expectation, a disturbance added to any of the nodes
affects the dynamics of all the other nodes in the network.
However, the extent of this interaction can be retrieved from
real experimental observations, in which noise is acting on
all nodes of the network, thereby affording the inference of
causal influence without either a calibrated model or tailored
experimental manipulations. Such a claim is anchored in the
discovery of a reciprocity principle for network dynamical
systems, which extends to this field of investigation a classical
tool in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our inference approach is applicable. In Section III, we study
the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second-order dynamics. In Section VI, we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of the study and identifies directions for further research.
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of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k; F 2

Rn⇥n is a matrix that specifies the individual dynamics; lij
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L 2 RN⇥N , which completely encodes the network topology
[27]; � 2 Rn⇥n is the inner coupling matrix constraining
the interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
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are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable. Model (1) is widely used to study collective dynamics
in the vicinity of a synchronization manifold [28], [29].
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k;

F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as

xk+1 = (IN ⌦ F � L ⌦ �)xk + (Q ⌦ B)⌘k, (2)

where IN is the identity matrix in RN , xk =⇥
(x1

k)
T, . . . , (xN

k )
T
⇤T, ⌘k =

⇥
(⌘1

k)
T . . . , (⌘n

k )
T
⇤T, and

Q = diag {q1, . . . , qN} 2 RN⇥N . In general, the state of
each unit may not be fully measurable, such that we have
limited access to only to the output yk = (IN ⌦ C)xk, where
C 2 Rp⇥n.
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].
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defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbation at a
selected unit ( circled in red), and observes its effect on the overall dynamics
of the system from the time-series of each unit (shown as a box). In practice,
these ideal experiments are not feasible and the researcher should infer causal
influence from real experimental observations where noise plagues each node.

for the network dynamical system, which could vary from
transient [13] to steady-state [17] features, studying causal
influence requires a series of ideal experiments where the
researcher can evaluate how specific manipulations at the
node-level translate into network-level performance. These
ideal experiments are typically based on an available mathe-
matical model that captures the interactions between the units
and their individual dynamics. However, seldom, do we have
complete knowledge about the network dynamical system,
whereby neither the dynamics of each individual unit nor the
topology of the interconnecting network are exactly known
to the researcher. In principle, a potential way around the
lack of a predictive mathematical model is to experimentally
probe the system through targeted interventions, but that
would require fine control over experimental variables that is
often unfeasible. Is it possible to identify key players in the
network from real experimental observations, without either
a calibrated mathematical model or the possibility to perform
experimental manipulations to support any manipulation of the
dynamics and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements the
growing body of technical literature that is shedding light on
the inner workings of dynamical systems from time-series,
without the need of a calibrated mathematical model. For
example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [4]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [22];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [23]. Not only
can statistically-principled methods help in the inference of
network topology, but also they can assist in the inference of
the network size and the discovery of hidden nodes [24].

Without a calibrated mathematical model or targeted ex-
perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observa-
tions where each node is plagued by noise. We focus on
synchronization problems, wherein the causal influence of
a node is defined as the extent to which adding noise at
that particular node affects the overall synchronization of
the entire network, that is, the vulnerability of the network

to a targeted disturbance. For a wide class of mathematical
models of network synchronization, we establish a closed-form
expression for the vulnerability, in terms of topological and
dynamic features of the network system. In agreement with
one’s expectation, a disturbance added to any of the nodes
affects the dynamics of all the other nodes in the network.
However, the extent of this interaction can be retrieved from
real experimental observations, in which noise is acting on
all nodes of the network, thereby affording the inference of
causal influence without either a calibrated model or tailored
experimental manipulations. Such a claim is anchored in the
discovery of a reciprocity principle for network dynamical
systems, which extends to this field of investigation a classical
tool in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section III,
we present the class of synchronization problems for which
our inference approach is applicable. In Section IV, we study
the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section V, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section VI, we illustrate the validity of our approach
on scalar and second-order dynamics. In Section VII, we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VIII summarizes the main conclusions
of the study and identifies directions for further research.
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III. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled, linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k; F 2

Rn⇥n is a matrix that specifies the individual dynamics; lij
is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology
[27]; � 2 Rn⇥n is the inner coupling matrix constraining
the interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable. Model (1) is widely used to study collective dynamics
in the vicinity of a synchronization manifold [28], [29].
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.
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We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as
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where xi
k 2 Rn is the state of the i-the unit at time k;

F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as

xk+1 = (IN ⌦ F � L ⌦ �)xk + (Q ⌦ B)⌘k, (2)
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each unit may not be fully measurable, such that we have
limited access to only to the output yk = (IN ⌦ C)xk, where
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].
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tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbation at a
selected unit ( circled in red), and observes its effect on the overall dynamics
of the system from the time-series of each unit (shown as a box). In practice,
these ideal experiments are not feasible and the researcher should infer causal
influence from real experimental observations where noise plagues each node.

for the network dynamical system, which could vary from
transient [13] to steady-state [17] features, studying causal
influence requires a series of ideal experiments where the
researcher can evaluate how specific manipulations at the
node-level translate into network-level performance. These
ideal experiments are typically based on an available mathe-
matical model that captures the interactions between the units
and their individual dynamics. However, seldom, do we have
complete knowledge about the network dynamical system,
whereby neither the dynamics of each individual unit nor the
topology of the interconnecting network are exactly known
to the researcher. In principle, a potential way around the
lack of a predictive mathematical model is to experimentally
probe the system through targeted interventions, but that
would require fine control over experimental variables that is
often unfeasible. Is it possible to identify key players in the
network from real experimental observations, without either
a calibrated mathematical model or the possibility to perform
experimental manipulations to support any manipulation of the
dynamics and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements the
growing body of technical literature that is shedding light on
the inner workings of dynamical systems from time-series,
without the need of a calibrated mathematical model. For
example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [4]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [22];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [23]. Not only
can statistically-principled methods help in the inference of
network topology, but also they can assist in the inference of
the network size and the discovery of hidden nodes [24].

Without a calibrated mathematical model or targeted ex-
perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observa-
tions where each node is plagued by noise. We focus on
synchronization problems, wherein the causal influence of
a node is defined as the extent to which adding noise at
that particular node affects the overall synchronization of
the entire network, that is, the vulnerability of the network

to a targeted disturbance. For a wide class of mathematical
models of network synchronization, we establish a closed-form
expression for the vulnerability, in terms of topological and
dynamic features of the network system. In agreement with
one’s expectation, a disturbance added to any of the nodes
affects the dynamics of all the other nodes in the network.
However, the extent of this interaction can be retrieved from
real experimental observations, in which noise is acting on
all nodes of the network, thereby affording the inference of
causal influence without either a calibrated model or tailored
experimental manipulations. Such a claim is anchored in the
discovery of a reciprocity principle for network dynamical
systems, which extends to this field of investigation a classical
tool in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section III,
we present the class of synchronization problems for which
our inference approach is applicable. In Section IV, we study
the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section V, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section VI, we illustrate the validity of our approach
on scalar and second-order dynamics. In Section VII, we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VIII summarizes the main conclusions
of the study and identifies directions for further research.
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III. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled, linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k; F 2

Rn⇥n is a matrix that specifies the individual dynamics; lij
is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology
[27]; � 2 Rn⇥n is the inner coupling matrix constraining
the interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable. Model (1) is widely used to study collective dynamics
in the vicinity of a synchronization manifold [28], [29].
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k;

F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as

xk+1 = (IN ⌦ F � L ⌦ �)xk + (Q ⌦ B)⌘k, (2)

where IN is the identity matrix in RN , xk =⇥
(x1

k)
T, . . . , (xN

k )
T
⇤T, ⌘k =

⇥
(⌘1

k)
T . . . , (⌘n

k )
T
⇤T, and

Q = diag {q1, . . . , qN} 2 RN⇥N . In general, the state of
each unit may not be fully measurable, such that we have
limited access to only to the output yk = (IN ⌦ C)xk, where
C 2 Rp⇥n.
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.
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We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as
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k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k;

F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
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are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as
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limited access to only to the output yk = (IN ⌦ C)xk, where
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbation at a
selected unit ( circled in red), and observes its effect on the overall dynamics
of the system from the time-series of each unit (shown as a box). In practice,
these ideal experiments are not feasible and the researcher should infer causal
influence from real experimental observations where noise plagues each node.

for the network dynamical system, which could vary from
transient [13] to steady-state [17] features, studying causal
influence requires a series of ideal experiments where the
researcher can evaluate how specific manipulations at the
node-level translate into network-level performance. These
ideal experiments are typically based on an available mathe-
matical model that captures the interactions between the units
and their individual dynamics. However, seldom, do we have
complete knowledge about the network dynamical system,
whereby neither the dynamics of each individual unit nor the
topology of the interconnecting network are exactly known
to the researcher. In principle, a potential way around the
lack of a predictive mathematical model is to experimentally
probe the system through targeted interventions, but that
would require fine control over experimental variables that is
often unfeasible. Is it possible to identify key players in the
network from real experimental observations, without either
a calibrated mathematical model or the possibility to perform
experimental manipulations to support any manipulation of the
dynamics and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements the
growing body of technical literature that is shedding light on
the inner workings of dynamical systems from time-series,
without the need of a calibrated mathematical model. For
example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [4]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [22];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [23]. Not only
can statistically-principled methods help in the inference of
network topology, but also they can assist in the inference of
the network size and the discovery of hidden nodes [24].

Without a calibrated mathematical model or targeted ex-
perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observa-
tions where each node is plagued by noise. We focus on
synchronization problems, wherein the causal influence of
a node is defined as the extent to which adding noise at
that particular node affects the overall synchronization of
the entire network, that is, the vulnerability of the network

to a targeted disturbance. For a wide class of mathematical
models of network synchronization, we establish a closed-form
expression for the vulnerability, in terms of topological and
dynamic features of the network system. In agreement with
one’s expectation, a disturbance added to any of the nodes
affects the dynamics of all the other nodes in the network.
However, the extent of this interaction can be retrieved from
real experimental observations, in which noise is acting on
all nodes of the network, thereby affording the inference of
causal influence without either a calibrated model or tailored
experimental manipulations. Such a claim is anchored in the
discovery of a reciprocity principle for network dynamical
systems, which extends to this field of investigation a classical
tool in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section III,
we present the class of synchronization problems for which
our inference approach is applicable. In Section IV, we study
the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section V, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section VI, we illustrate the validity of our approach
on scalar and second-order dynamics. In Section VII, we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VIII summarizes the main conclusions
of the study and identifies directions for further research.
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We consider a network of N diffusively coupled, linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.
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We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as
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where xi
k 2 Rn is the state of the i-the unit at time k;

F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as

xk+1 = (IN ⌦ F � L ⌦ �)xk + (Q ⌦ B)⌘k, (2)
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].

Ideal experiment Real experiment
Without a calibrated mathematical model or targeted ex-

perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observations
where each node is plagued by noise. We focus on synchro-
nization problems, wherein the causal influence of a node is
defined as the extent to which adding noise at that particular
node affects the overall synchronization of the entire network,
that is, the vulnerability of the network to a targeted distur-

bance. For a wide class of mathematical models of network
synchronization, we establish a closed-form expression for the
vulnerability, in terms of topological and dynamic features of
the network system. In agreement with one’s expectation, a
disturbance added to any of the nodes affects the dynamics
of all the other nodes in the network. However, the extent
of this interaction can be retrieved from real experimental
observations, in which noise is acting on all nodes of the
network, thereby affording the inference of causal influence
without either a calibrated model or tailored experimental
manipulations. Such a claim is anchored in the discovery of a
reciprocity principle for network dynamical systems, thereby
extending to this field of investigation a classical tool in the
study of in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section II,
we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.
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L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1
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are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
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Using Kronecker algebra [27], (1) can be rewritten in
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbation at a
selected unit ( circled in red), and observes its effect on the overall dynamics
of the system from the time-series of each unit (shown as a box). In practice,
these ideal experiments are not feasible and the researcher should infer causal
influence from real experimental observations where noise plagues each node.

for the network dynamical system, which could vary from
transient [13] to steady-state [17] features, studying causal
influence requires a series of ideal experiments where the
researcher can evaluate how specific manipulations at the
node-level translate into network-level performance. These
ideal experiments are typically based on an available mathe-
matical model that captures the interactions between the units
and their individual dynamics. However, seldom, do we have
complete knowledge about the network dynamical system,
whereby neither the dynamics of each individual unit nor the
topology of the interconnecting network are exactly known
to the researcher. In principle, a potential way around the
lack of a predictive mathematical model is to experimentally
probe the system through targeted interventions, but that
would require fine control over experimental variables that is
often unfeasible. Is it possible to identify key players in the
network from real experimental observations, without either
a calibrated mathematical model or the possibility to perform
experimental manipulations to support any manipulation of the
dynamics and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements the
growing body of technical literature that is shedding light on
the inner workings of dynamical systems from time-series,
without the need of a calibrated mathematical model. For
example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [4]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [22];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [23]. Not only
can statistically-principled methods help in the inference of
network topology, but also they can assist in the inference of
the network size and the discovery of hidden nodes [24].

Without a calibrated mathematical model or targeted ex-
perimental manipulations, we successfully pinpoint influen-
tial nodes from time-series of real experimental observa-
tions where each node is plagued by noise. We focus on
synchronization problems, wherein the causal influence of
a node is defined as the extent to which adding noise at
that particular node affects the overall synchronization of
the entire network, that is, the vulnerability of the network

to a targeted disturbance. For a wide class of mathematical
models of network synchronization, we establish a closed-form
expression for the vulnerability, in terms of topological and
dynamic features of the network system. In agreement with
one’s expectation, a disturbance added to any of the nodes
affects the dynamics of all the other nodes in the network.
However, the extent of this interaction can be retrieved from
real experimental observations, in which noise is acting on
all nodes of the network, thereby affording the inference of
causal influence without either a calibrated model or tailored
experimental manipulations. Such a claim is anchored in the
discovery of a reciprocity principle for network dynamical
systems, which extends to this field of investigation a classical
tool in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section III,
we present the class of synchronization problems for which
our inference approach is applicable. In Section IV, we study
the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section V, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section VI, we illustrate the validity of our approach
on scalar and second-order dynamics. In Section VII, we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VIII summarizes the main conclusions
of the study and identifies directions for further research.
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Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbations at a
selected unit and observes its effect on the overall dynamics of the system (left
panel). In practice, these ideal experiments are not feasible and the researcher
should infer causal influence from real experimental observations (right panel).

a series of ideal experiments where the researcher could
evaluate how specific manipulations at the node-level trans-
late into network-level performance. These ideal experiments
are typically based on an available mathematical model that
captures the interactions between the units and their individual
dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
mathematical model is to experimentally probe the system
through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
and topology?
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real experimental observations. Our approach complements
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we present the class of synchronization problems for which
our model-free approach is applicable. In Section III, we
study the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as
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k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k;

F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as

xk+1 = (IN ⌦ F � L ⌦ �)xk + (Q ⌦ B)⌘k, (2)

where IN is the identity matrix in RN , xk =⇥
(x1
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T, . . . , (xN

k )
T
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⇥
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T . . . , (⌘n

k )
T
⇤T, and

Q = diag {q1, . . . , qN} 2 RN⇥N . In general, the state of
each unit may not be fully measurable, such that we have
limited access to only to the output yk = (IN ⌦ C)xk, where
C 2 Rp⇥n.
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dynamics. However, seldom, do we have complete knowledge
about the network dynamical system, whereby neither the
dynamics of each individual unit nor the topology of the
interconnecting network are exactly known to the researcher.
In principle, a potential way around the lack of a predictive
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through targeted interventions, but that would require fine
control over experimental variables that is often unfeasible.
Is it possible to identify key players in the network from
real experimental observations, without either a calibrated
mathematical model or the possibility to perform experimental
manipulations to support any manipulation of the dynamics
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of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements
the growing body of technical literature that seeks to shed
light on the inner workings of dynamical systems from time-
series, without a need of a calibrated mathematical model.
For example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [3]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [21];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [22]. Not only
can statistically-principled methods help in the inference of
a network topology, but also they can assist in the inference
of the size of the network and the discovery of hidden nodes
[23], [24].
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at a specific node. In Section IV, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section V, we illustrate the validity of our approach
on scalar and second order dynamics. In Section VI and we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VII summarizes the main conclusions
of our study and identifies directions for further research.

II. DYNAMICS OF THE NETWORK DYNAMICAL SYSTEM

We consider a network of N diffusively coupled linear
dynamical systems in a discrete-time setting. The dynamics
of the i-th unit can be written as

xi
k+1 = Fxi

k �
NX

j=1

lij�xj
k + qiB⌘i

k, (1)

where xi
k 2 Rn is the state of the i-the unit at time k;

F 2 Rn⇥n is a matrix that specifies the individual dynamics;
lij is the ij-th element of the Laplacian matrix of the network
L 2 RN⇥N , which completely encodes the network topology;
� 2 Rn⇥n is the inner coupling matrix constraining the
interaction between neighboring nodes; ⌘1

k, . . . , ⌘N
k 2 Rm

are independent identically distributed noise with zero mean
and covariance matrix ⌃⌘; qi is positive if node i is affected
by noise, while it is 0 otherwise; and matrix B 2 Rn⇥m

determines how the noise affects the components of the state
variable.

Using Kronecker algebra [27], (1) can be rewritten in
compact matrix form as

xk+1 = (IN ⌦ F � L ⌦ �)xk + (Q ⌦ B)⌘k, (2)

where IN is the identity matrix in RN , xk =⇥
(x1

k)
T, . . . , (xN

k )
T
⇤T, ⌘k =

⇥
(⌘1

k)
T . . . , (⌘n

k )
T
⇤T, and

Q = diag {q1, . . . , qN} 2 RN⇥N . In general, the state of
each unit may not be fully measurable, such that we have
limited access to only to the output yk = (IN ⌦ C)xk, where
C 2 Rp⇥n.

Fig. 1. The notion of causal influence is based on a sequence of ideal
experiments, in which the researcher introduces a desired perturbation at a
selected unit ( circled in red), and observes its effect on the overall dynamics
of the system from the time-series of each unit (shown as a box). In practice,
these ideal experiments are not feasible and the researcher should infer causal
influence from real experimental observations where noise plagues each node.
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topology of the interconnecting network are exactly known
to the researcher. In principle, a potential way around the
lack of a predictive mathematical model is to experimentally
probe the system through targeted interventions, but that
would require fine control over experimental variables that is
often unfeasible. Is it possible to identify key players in the
network from real experimental observations, without either
a calibrated mathematical model or the possibility to perform
experimental manipulations to support any manipulation of the
dynamics and topology?

The objective of this paper is to fill this knowledge gap by
demonstrating the possibility of inferring the causal influence
of every node in a network from time-series of its nodes during
real experimental observations. Our approach complements the
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the inner workings of dynamical systems from time-series,
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example, cross-correlation techniques have been utilized to
infer functional connectivity patterns in the brain [4]; extreme
event synchronization has been proven to be successful in
aiding the reconstruction of complex climate networks [22];
and transfer entropy has been used to elucidate the relationship
between media output and firearm prevalence [23]. Not only
can statistically-principled methods help in the inference of
network topology, but also they can assist in the inference of
the network size and the discovery of hidden nodes [24].
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tial nodes from time-series of real experimental observa-
tions where each node is plagued by noise. We focus on
synchronization problems, wherein the causal influence of
a node is defined as the extent to which adding noise at
that particular node affects the overall synchronization of
the entire network, that is, the vulnerability of the network

to a targeted disturbance. For a wide class of mathematical
models of network synchronization, we establish a closed-form
expression for the vulnerability, in terms of topological and
dynamic features of the network system. In agreement with
one’s expectation, a disturbance added to any of the nodes
affects the dynamics of all the other nodes in the network.
However, the extent of this interaction can be retrieved from
real experimental observations, in which noise is acting on
all nodes of the network, thereby affording the inference of
causal influence without either a calibrated model or tailored
experimental manipulations. Such a claim is anchored in the
discovery of a reciprocity principle for network dynamical
systems, which extends to this field of investigation a classical
tool in mechanics and electromagnetics [25], [26].

The rest of the paper is organized as follows. In Section III,
we present the class of synchronization problems for which
our inference approach is applicable. In Section IV, we study
the noisy dynamics of the network system and introduce
our notion of causal influence, establishing a closed-form
expression for the vulnerability of the system to noise injected
at a specific node. In Section V, we prove our main claim
regarding the inference of causal influence from raw time-
series. In Section VI, we illustrate the validity of our approach
on scalar and second-order dynamics. In Section VII, we
examine two real-world applications: firearm prevalence in the
United States of America and players’ coordination in a soccer
match. Finally, Section VIII summarizes the main conclusions
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• Firearm acquisition in the U.S. has an inherent network 
structure (Porfiri et al., 2020)

• Firearm acquisitions in any State are influenced by acquisitions 
in other States
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Firearm Prevalence in the U.S.

13/18P. De Lellis - Lyon, October 27, 2021

• Firearm acquisition in the U.S. has an inherent network 
structure (Porfiri et al., 2020)

• Firearm acquisitions in any State are influenced by acquisitions 
in other States

• Background checks are a proxy of firearm acquisitions
• We analyzed data from 1999 to 2017
• The time-series has been detrended and seasonally adjusted
• We then calculated the sample mean covariance matrix 

associated to the pre-processed time-series
• Assuming that noise enters all the States in the same manner, 

we estimated the vulnerability index we defined
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• The 5 most influential states are South Dakota, Tennessee, Alaska, 
Alabama, and Colorado
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• These states are among those with the most permissive legal 
environment (quantified as the fraction of firearm safety law in effect)
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• States in which it is easier to purchase a firearm might have a higher 
connectivity in the network: other States may use them as proxy of 
potential changes in firearm regulations



Analysis of a Soccer Dataset

15/18P. De Lellis - Lyon, October 27, 2021

• We examine a dataset of the positions of 9 soccer players in a 
soccer game

• We focus on the time series of speed and compute vulnerability
• In this context, vulnerability is associated to lack of coordination
• Player 4 and 8 appear to be the key players in the team



Analysis of a Soccer Dataset

16/18P. De Lellis - Lyon, October 27, 2021

• Player 4 acts behind the strikers, while Player 8 is one of the two 
strikers

• A reduction in the coordination of either of these two players 
could hinder the coordination of the whole team

• Interesting, they are among the player with the least ball 
possession (movements off the ball are crucial)

Player 4 Player 8



Discussion
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• We established a novel approach to identify influential nodes in 
network dynamical systems from time-series of real experiments

• We focused networks of time-invariant, diffusively coupled linear 
systems that synchronize against added noise

• For this class of problems, the influence of a node is defined as 
the extent to which adding noise at that particular node affects 
the steady-state covariance of the disagreement dynamics

• We demonstrate that the influence of each of the nodes can be 
effectively inferred from time series

• The chief reason for the correspondence between ideal and real 
experiments lies in the reciprocity principle



Ongoing and Future Research

18/18P. De Lellis - Lyon, October 27, 2021

• In the same setting, can we identify other salient features (e.g. 
numerosity, hidden units)?

• Devise methodologies for inferring influence from real experiments 
in which nodes have heterogeneous nodal dynamics

• The entire methodology assumes that the network is undirected. 
which allows for deriving modal equations that would be not 
feasible in the case of directed networks. 

• The mathematical treatment is presently limited to time-invariant 
linear dynamics, thereby calling for further research on temporal 
networks and nonsmooth dynamics.
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