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Motivation

Unsupervised learning task Applications/Scenarios

* Observe draws of random vectors o Neural Spike Trains?
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* Learn structure and parameters of a
positive distribution ,u(g) >0
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Epidemic Spreading?3:

SIR Model
Can we learn from non-i.i.d. time-correlated or >15 Moff' & %( ;a.
dynamical samples and gain an advantage? 'ﬁ‘i"ﬁ‘ 'ﬁ‘@i’ﬁ‘ﬁ‘ Sﬁ" ﬁm
& il 4&( l
I S IS I1 [y
@

Wi

|
250



Graphical Model Learning

Learn probability distribution ,u(g) > 0 which has conditional dependency structure
according to a given graph G=(V,E)

Ising Models:
* BinaryRVatie V:o0;,€{-1,1}

. ,u(g) parameterized by
= Couplingintensity J = {J;;|(%,7) € E}
= Magnetic field H = {H;|i € V'}

* Naturally defined dynamics
* Properties:

u(o) = = exp Z Jij0i0; + ZH o; * node degree d
(4,5)€E i€V = maximum coupling intensity B



Ising Model Learning

Structure learning: learn {(%,7)|Ji; # 0}

Parameter learning: learn J and H up to some accuracy

Sample complexity? (i.i.d.): m = O (exp(65d))

Can we learn Ising models efficiently from time-correlated samples?



Dynamical Learning for Biological Neuronal Networks

Graphical Model Parameters

Neural Spike Trains 10° |
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Data assumed to be i.i.d.
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Generating samples through dynamics

Natural dynamics on Ising models: Glauber dynamics (Gibbs sampling)

At time step t:

Qt ; Qt_l_l

Choose node 2 at random

t+1

Update 0. ~ p(o;|a?)

Sample: (of, o', 1"t
\_'_’

Updated node identity



Setting of Learning Ising Models from Dynamics

T-Regime
(Trajectory)




Setting of Learning Ising Models from Dynamics

T-Regime
(Trajectory)

* Initial distribution p(go) is uniform distribution
* Mixing time is exponential in B



Setting of Learning Ising Models from Dynamics

T-Regime M-Regime
(Trajectory) (Multiple Restarts)

* Initial distribution p(go) is uniform distribution Sampling far from equilibrium
* Mixing time is exponential in B



Efficient Algorithms for Learning Ising Model Dynamics

Adapted learning algorithms'? from i.i.d. samples to Glauber Dynamics

lf—l—l7 It—l—l)

Input: m samples {(Qt, g }tE{O,l ..... m—1}

Idea: For each node u € V', maximize conditional likelihood (Glauber dynamics)

ploy," |e)



Efficient Algorithms for Learning Ising Model Dynamics

A A

Form: (J, ,H,)=argmin L,,(J,,, H,) + A||J, |1
(Lo>Hu)

Estimators:
* Dynamics Regularized Pseudolikelihood Estimation (D-RPLE)
* Dynamics Regularized Interaction Screening Estimation (D-RISE)

Local Reconstruction (one neighborhood at a time)

Convex Function (with low computational complexity e.g., using entropic descent)



Empirical Study of Sample Complexity in T-regime

Ferromagnetic model
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Empirical Study of Sample Complexity in M-regime

Ferromagnetic model
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Theorem for Learning of Ising Models in M-regime

Informal: With high probability, learning algorithms learn the parameters accurately
for all nodes u € V/, if the number of samples satisfy

D-RPLE: m = () (exp(4ﬁd)) Ising model specific properties
- Node degree: d

- Maximum coupling intensity: B

D-RISE:  m = O (exp(26d))
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Active Learning of Ising Model Dynamics

Can we improve the sample complexity of learning Ising models in M-regime
through a wise choice of initial query distribution p(go)?

* M-regime is amenable to both online and active learning

* Max-entropy distribution yields up to 47% constant savings
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Summary

Results and Implications
* Time correlated samples can be useful for unsupervised learning
* Ising models can be efficiently learned from Glauber dynamics

* Highlighted real-world applications

Future Work
e Extension to multi-site dynamics, MRFs, partial observations, etc.



