

Exponential Reduction in Sample Complexity with Learning of Ising Model Dynamics

Arkopal Dutt, Andrey Lokhov, Marc Vuffray, and Sidhant Misra

Motivation

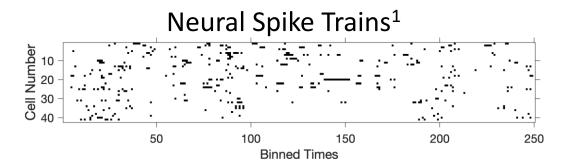
Unsupervised learning task

- Observe draws of random vectors σ
- Learn structure and parameters of a positive distribution $\mu(\underline{\sigma}) > 0$

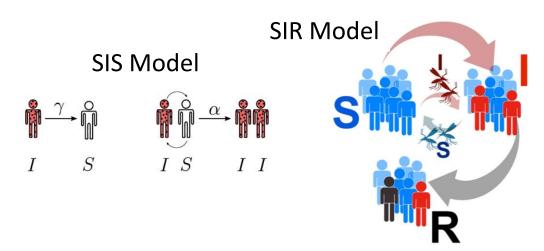
Limitation: assuming samples of $\underline{\sigma}$ are i.i.d.

Can we learn from non-i.i.d. time-correlated or dynamical samples and gain an advantage?

Applications/Scenarios



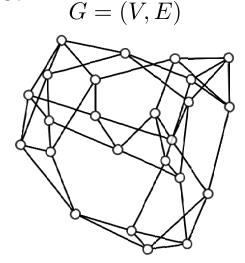
Epidemic Spreading^{2,3}:



Graphical Model Learning

Learn probability distribution $\mu(\underline{\sigma})>0$ which has conditional dependency structure according to a given graph G=(V,E)

Ising Models:



$$\mu(\underline{\sigma}) = \frac{1}{Z} \exp \left(\sum_{(i,j) \in E} J_{ij} \sigma_i \sigma_j + \sum_{i \in V} H_i \sigma_i \right) \quad \begin{array}{c} \bullet \quad \text{Properties:} \\ \bullet \quad \text{node degree } d \\ \bullet \quad \text{maximum coupling intensity } \beta \end{array} \right)$$

- Binary RV at $i \in V$: $\sigma_i \in \{-1, 1\}$
- $\mu(\underline{\sigma})$ parameterized by
 - Coupling intensity $\underline{J} = \{J_{ij} | (i,j) \in E\}$
 - Magnetic field $\underline{H} = \{H_i | i \in V\}$
- Naturally defined dynamics

Ising Model Learning

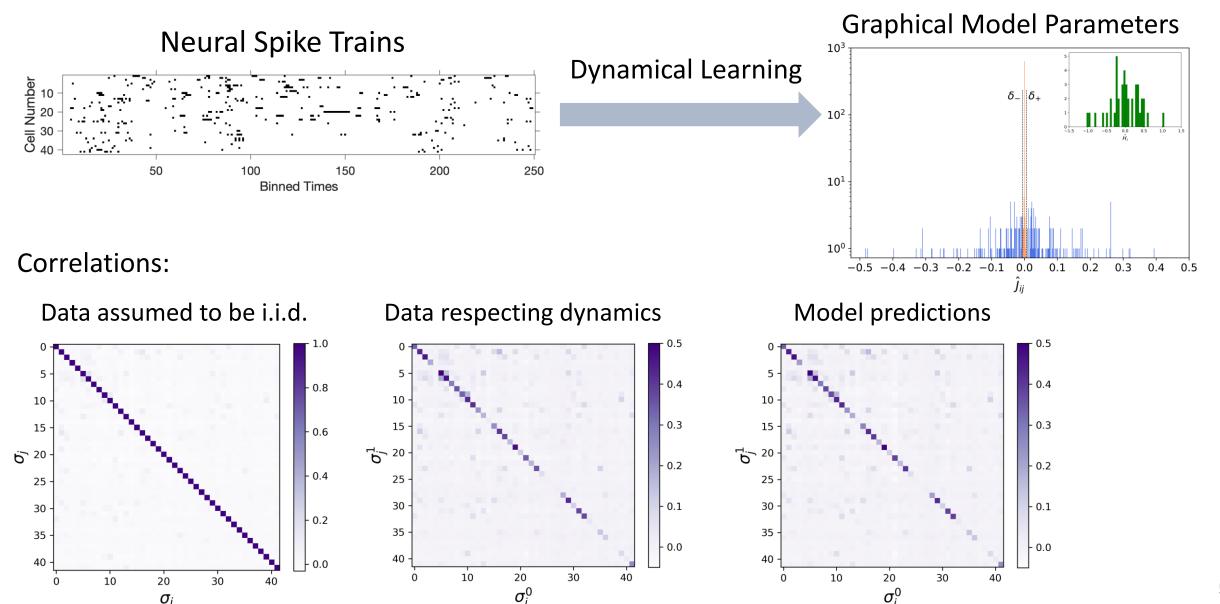
Structure learning: learn $\{(i,j)|J_{ij}\neq 0\}$

Parameter learning: learn \underline{J} and \underline{H} up to some accuracy

Sample complexity¹ (i.i.d.): $m = \mathcal{O}\left(\exp(6\beta d)\right)$

Can we learn Ising models efficiently from time-correlated samples?

Dynamical Learning for Biological Neuronal Networks



Generating samples through dynamics

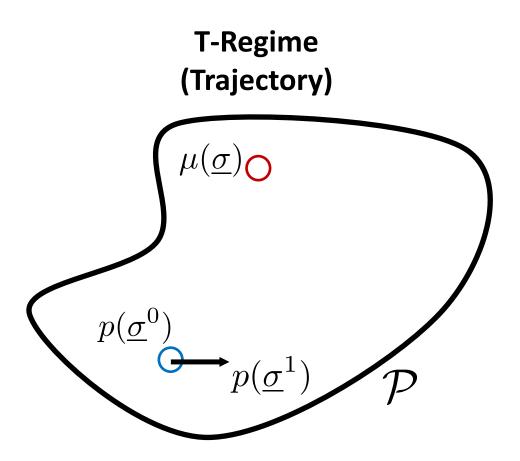
Natural dynamics on Ising models: Glauber dynamics (Gibbs sampling)

At time step *t*:

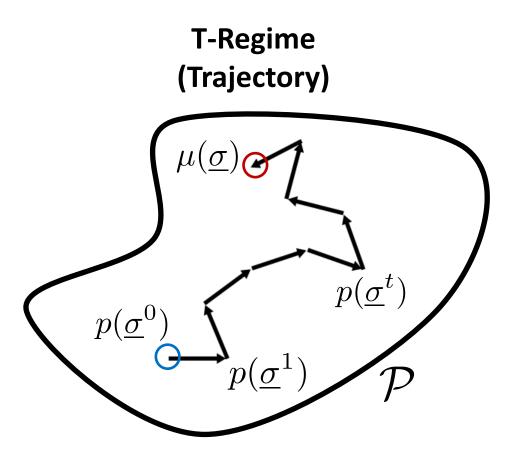
Sample:
$$(\underline{\sigma}^t, \underline{\sigma}^{t+1}, \underline{I}^{t+1})$$

Updated node identity

Setting of Learning Ising Models from Dynamics

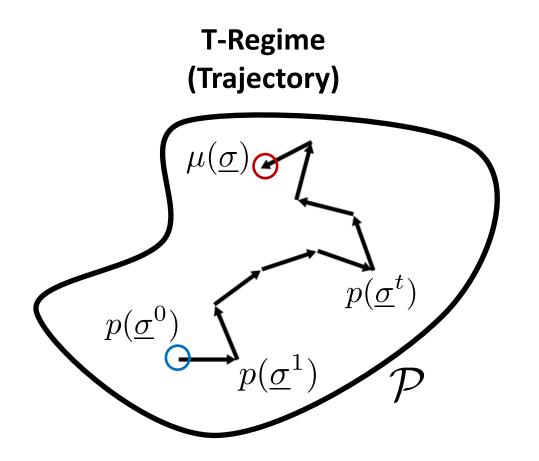


Setting of Learning Ising Models from Dynamics



- Initial distribution $p(\underline{\sigma}^0)$ is uniform distribution
- Mixing time is exponential in β

Setting of Learning Ising Models from Dynamics



M-Regime (Multiple Restarts) $\mu(\underline{\sigma}) \bigcirc \qquad \qquad p(\underline{\sigma}^1) \\ p(\underline{\sigma}^0) \qquad p(\underline{\sigma}^1) \\ p(\underline{\sigma}^1) \qquad p(\underline{\sigma}^1)$

- Initial distribution $p(\underline{\sigma}^0)$ is uniform distribution
- Mixing time is exponential in β

Sampling far from equilibrium

Efficient Algorithms for Learning Ising Model Dynamics

Adapted learning algorithms^{1,2} from i.i.d. samples to Glauber Dynamics

Input: m samples $\{(\underline{\sigma}^t, \underline{\sigma}^{t+1}, I^{t+1})\}_{t \in \{0,1,\dots,m-1\}}$

Idea: For each node $u \in V$, maximize conditional likelihood (Glauber dynamics)

$$p(\sigma_u^{t+1}|\underline{\sigma}^t)$$

Efficient Algorithms for Learning Ising Model Dynamics

Form:
$$(\underline{\hat{J}}_u, \hat{H}_u) = \underset{(\underline{J}_u, H_u)}{\operatorname{argmin}} \mathcal{L}_m(\underline{J}_u, H_u) + \lambda ||\underline{J}_u||_1$$

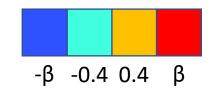
Estimators:

- Dynamics Regularized Pseudolikelihood Estimation (D-RPLE)
- Dynamics Regularized Interaction Screening Estimation (D-RISE)

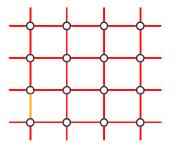
Local Reconstruction (one neighborhood at a time)

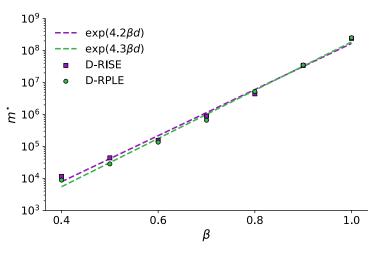
Convex Function (with low computational complexity e.g., using entropic descent)

Empirical Study of Sample Complexity in T-regime

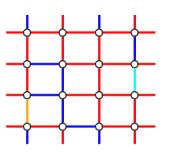


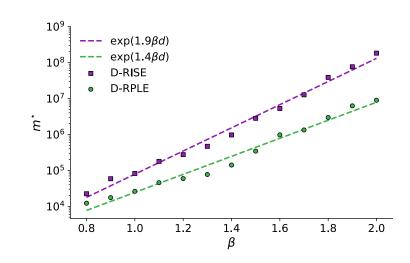
Ferromagnetic model



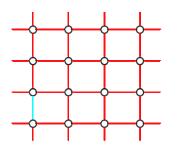


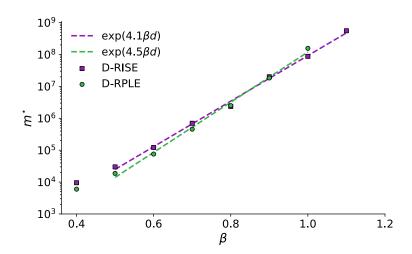
Spin glass



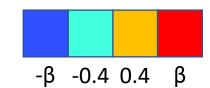


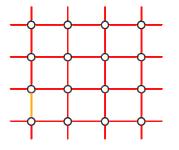
Ferromagnetic model with weak impurity

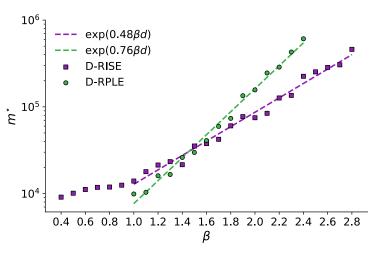




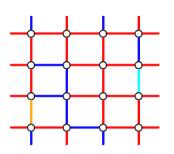
Empirical Study of Sample Complexity in M-regime

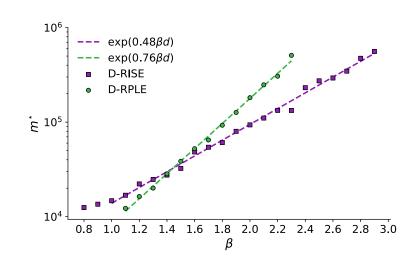




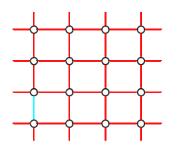


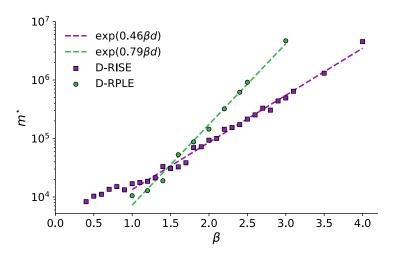
Spin glass





Ferromagnetic model with weak impurity





Theorem for Learning of Ising Models in M-regime

Informal: With high probability, learning algorithms learn the parameters accurately for all nodes $u \in V$, if the number of samples satisfy

D-RPLE:
$$m = \mathcal{O}\left(\exp(4\beta d)\right)$$

D-RISE:
$$m = \mathcal{O}\left(\exp(2\beta d)\right)$$

Ising model specific properties

- Node degree: d

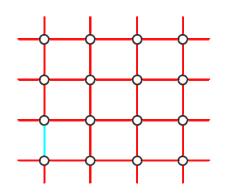
- Maximum coupling intensity: β

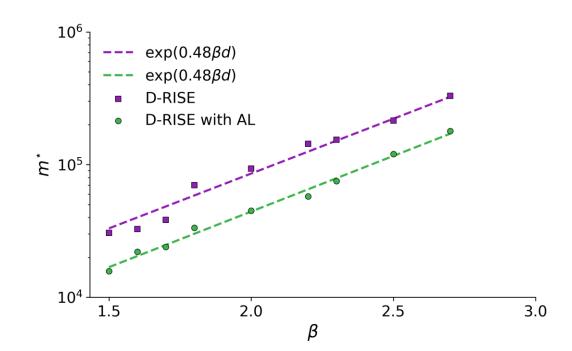
Active Learning of Ising Model Dynamics

Can we improve the sample complexity of learning Ising models in M-regime through a wise choice of initial query distribution $p(\underline{\sigma}^0)$?

- M-regime is amenable to both online and active learning
- Max-entropy distribution yields up to 47% constant savings

Ferromagnetic model with weak impurity





Summary

Results and Implications

- Time correlated samples can be useful for unsupervised learning
- Ising models can be efficiently learned from Glauber dynamics
- Highlighted real-world applications

Future Work

• Extension to multi-site dynamics, MRFs, partial observations, etc.