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Power Grid Resilience

Physical Attacks/Failures Cyber Attacks/Failures

Power Grid Communication networks
Physical Infrastructure
Supervisory Control and Data
Acquisition (SCADA) system

Due to the potential for cascading failures
a clever cyber-attack can be amplified by the grid operators



San Diego Blackout, Sept. 2011 — Human Error
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“Ideally” a cyber attack would cause the operators to make a human error




Simplistic view of a Power Grids
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Power Grid Supervisory Control and Data
Physical Infrastructure Acquisition (SCADA) system

PMU: Phasor Measurement Unit
PDC: Phasor Data Concentrators



Physical Attack in San Jose (Apr. 2014)

“A sniper attack in April 2014 that knocked out an electrical substation near San Jose, Calif., has
raised fears that the country's power grid is vulnerable to terrorism. ” =The Wall Street Journal

Shots in the Dark
A look at the April 16 attack on PG&E's Metcalf Transmission Substation
12:58 a.m., 1:31a.m. 1:41a.m. 1:45 am. 1:50 am. 1:51a.m. 315am.
107 am. Attackers First 911 call Transformers  Attack ends Police arrive Utility
Attackerscut  openfireon  frompower  alloverthe  and gunmen but can't electrician
telephone substation plant substation leave enter the arrives
cables operator  start crashing locked

substation

Sources: PG&E; Santa Clara County Sheriff's Dept.; California Indepandent System Operator; California Public Utilities Commissiong Google (image)
The Wall Street Journal



Cyber Attack in Ukraine (Dec. 2015)

Unplugged 225,000 people from the Ukrainian electricity grid

Before June 2015 June — December 2015 23 December 2015

« Extensive reconnaissance » Exploration of SCADA » Synchronized, remote
of distribution utilities’ systems and attack operation of substation
corporate networks planning breakers causes blackout

« Spear phishing emails to » Development of malicious » Control-room backup
executives to implant a firmware for substation power supplies are
variant of the Black Energy equipment remotely disconnected
malware » Phone jamming attack

» Theft of credentials for keeps operators unaware
accessing SCADA « Malware destroys data
systems needed to operate

equipment

Source: ICS-CERT, SANS Institute



Cyber Attack in Ukraine (Dec. 2015)

Unplugged 225,000 people from the Ukrainian electricity grid

Before June 2015 June — December 2015 23 December 2015

Source: ICS-CERT, SANS Institute



Transmission Grid - State Recovery after a Cyber-Physical Attack

= State recovery under the DC model
= State recovery in the presence of measurement noise and uncertainty
= State recovery under the AC model

m  Attack identification when the affected area is unknown
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Attack Identification when the Affected Area is Unknown

Detect the line failures as well as the attacked area H after a cyber-physical attack
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[1]S. Soltan, M. Yannakakis, and G. Zussman, “REACT to cyber attacks on power grids,” I[EEE Transactions on Network Science and Engineering,
vol. 6, no. 3, pp. 459-473, Sept. 2019.



Location Unknown - Cyber Attacks

Physical attack - some lines in the area fail

Cyber attack:
o Data distortion

o Data Replay

6* is the observed phase angles vector after the attack which is different from the actual 6’

NP-Hard to detect the set of line failures (even if the attack area is known and even under the DC
approximation)

\ 4

Approximate solutions



Example

Approximately detect the attacked area in 3 steps

Identify line failures with some confidence
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Performance - Small Area (15 nodes)
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Data Distortion vs. Data Replay

Difficulty in detecting the attacked area after a data replay attack
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(a) Data Distortion Attack

(b) Data Replay Attack




From Transmission to Distribution

Most of the research in this field has focused on the Transmission grid

The Distribution grid, on the other hand, suffers from under-observability even when not attacked



AURORA (AUtonomous and Resilient Operation of energy systems with RenewaAbles), PI: Ulrich Muenz (Siemens)
Develop and demonstrate a 3-layer protection scheme against cyber and physical threats

\vae’ \""VSica' External data, Project objectives
threat threat e.g. weather data
Layer 1: Security Situational Awareness
1. Assess and optimize resiliency against physical threats
2. Detect and localize cyber attacks

] Loss of MGMS
Global restoration Loss of communication

Layer 2: Distributed Microgrid Coordination

Sky imager

3. Continuity of service after attack on control center or
communication system

: >
Local restoration t l Blackout
- Microgrid 1 /” M
— —— Layer 3: Autonomous Microgrid Restoration

Layer 3: Autonomous Microgrid Restoration Microgrid 2 Microgrid 3
4, Fast restoration after blackouts

Layer 2: Distributed Microgrid Coordination
5. Robust parallel grid-forming inverters

Layer 1: Security Situational Awareness

: Communication line
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MGMS: Microgrid Management System; MGC: Microgrid Controller; RIAPS: Resilient Information Architecture Platform for the Smart Grid




Distribution Grid — Partial Observability

Distribution grid o —H 1T
Natural fluctuations = o
. . oy Substation

Limited observability -

= Sensors are becoming more pervasive but still “fragile” ﬂ; ﬁ g g Il = é]

? 1 Customers
DC approximation does not hold Generating Station ) Qe

==

Given:
= Historical data on voltage and power

= Partial real-time power measurements (e.g., due to cyber attacks)

Power-flow equations may be under-determined
= Model-driven approach may fail

Objective: prediction of voltages

Method: Incorporate the physical model of the power-flow
equations into the Deep Learning training
= Hybrid model and data driven approach




Objective and Assumptions

Goal: e o —5kv
= Accurate estimation of the distribution grid state Reference EUS 'Y
- ol
Assumptions: oo
= The distribution grid is affected, and
becomes under-observable e

= The Power-Flow Equations cannot be solved

Method: Historical data:

{0(0), 3}t

Predict:
D;(t) for all i

>
Cd

Deep Learning

Real-time measurements: Power-flow

8;(t) for some j

Evaluation: numerical



Related Work

¢ Distribution system state estimation [Chen et al. 2019], [Primadianto and Lu,
2017]

¢ Matrix completion techniques [Donti et al., 2018], [Genes et al., 2019],
[Miao et al., 2019]

¢ Machine learning tools for distribution system state estimation [Bhela et al.,
2018], [liang and Zhang, 2016]

¢ Physics-informed deep learning methods [Zamzam and Sidiropoulos, 2019],
[Hu et al., 2020], [Singh et al., 2020], [Zhang et al., 2019]

¢ Hybrid machine learning models in other domains [Zhu et al., 2020]



Sudden Failure State Estimation (SFSE)

Problem formulation

Specification 1. SFSE(T,t, N(t), N,(t))
Inputs:
full history before time ¢: {s(7),v(7)}'Z% |
partial measurements set at time ¢:
[Sl(t), cee st(t)(t)]; [’Ul(t), - ,'UNU(t)(t)]-

Output:
voltage estimation at time ¢: 9(¢).

A

3

# measurements

+-T-1, ...

Fully Observable:
2N measurements/time step

<N
Meas

-1,

t

_—)

time

For different levels of Observability at time (z), defined as O(N(t), N (t)) for a distribution network of N nodes:

For any N (t) € {0,...,N}; N,(t) € {0,...,N}, let

The Power-Flow Eqautions cannot be directly solved if the observability level drops below 50%

O(Ns(t), No(t)) =

Ni(t) + No(t)
2N

> O(Ns(t),Nv(t)) < 50% defines a low-observable, under-determined scenario



Power Flow-informed Deep Neural Network (DNN)

Power/Voltage
Measurements

Fully Observable
Measurements

(t-1-T...,t-1)



Power Flow-informed Deep Neural Network (DNN)

C!
Measurements DNN
(t-1-T..t-1)




Power Flow-informed Deep Neural Network (DNN)

Power/Voltage
Measurements

power

Fully

Observable|

voltage

Measurements DNN
(t-1-T,...,t-1)
Partially
observable
time step Feature Extractor Regressor
N h B b
{si®} 5 Fully Connected |9 Fully Connected 2N
(i No 2 Layers 1 Layer w
{0} P(Ns+No) | Tanh activations |N/6 N Leaky-ReLU N
activations
n
c
Fully a
observable :
time series n
a
t-T<t<t LSTM hto t h Fully Connected
1<i<N 2 layers —1. 5 Layers
{si(r),vi(r)} |BN(T-1) | Tanh activation |N/3 /2 Tanh activations 2N 2N 2N

(1)
5

N —The number of nodes

N, —The number of nodes that report the complex
power values

N, —The number of nodes that report the complex
voltage values

Inputs:

N time-series [t-T,...t-1] of the complex voltage values
N time-series [t-T,...t-1] of the complex power values
N, < N complex power values (for time index ¢)

N, < N complex power values (for time index )



Power Flow-informed Deep Neural Network (DNN)

Power/Voltage
Measurements

power

Fully

Observable

voltage

Measurements DNN
(t-1-T,...,t-1)
Partially
observable
time step Feature Extractor Regressor
N h B b
{si®} 5 Fully Connected |9 Fully Connected 2N
(i No 2 Layers 1 Layer w
{v: ()} R(Ns+No) | Tanh activations |N/6 g Leaky-ReLU N
activations
n
c
Fully a
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time series n
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t-T<t<t LSTM hto t h Fully Connected
1<i<N 2 layers —1. 5 Layers
{si(r),vi(r)} |BN(T-1) | Tanh activation |N/3 /2 Tanh activations 2N 2N 2N

(1)
g

The Loss function acts as a regularizer for the DNN,
incorporating the AC Power-Flow Equations

L(s,v,9,Y,)) = |[v — 9||® + A||s — diag(d)Y*9*||?

N —The number of nodes

N, —The number of nodes that report the complex
power values

N, —The number of nodes that report the complex
voltage values

Inputs:

N time-series [t-T,...t-1] of the complex voltage values
N time-series [t-T,...t-1] of the complex power values
N, < N complex power values (for time index ¢)

N, < N complex power values (for time index )



Power Flow-informed Deep Neural Network (DNN)

Power/Voltage power
Measurements
Fully Observable
Measurements DNN voltage
(t-1-T..t-1)
Partially
observable
time step Feature Extractor Regressor
N h B b
{si(®O}5 Fully Connected |9 Fully Connected 2N
(i No 2 Layers 1 Layer w
{0} P(Ns+No) | Tanh activations |N/6 N Leaky-ReLU N
activations
n
c
Fully a
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time series n
a
t-T<rt<t LSTM hro Tl & Fully Connected
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{si(r),vi(r)} JKN(T-1) [ Tanh activation |N/3 /2 Tanh activations 2N 2N 2N
i

Our Loss function acts as a regularizer for the DNN,
incorporating the AC Power-Flow Equations

L(s,v,9,Y,A)

(1)
g

MSE Term

+ \||s — diag(d)Y*o*||?



Power Flow-informed Deep Neural Network (DNN)

Power/Voltage power
Measurements
Fully Observable
Measurements DNN voltage
(t-1-T..t-1)
Partially
observable
time step Feature Extractor Regressor
N h B b
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Our Loss function acts as a regularizer for the DNN,
incorporating the AC Power-Flow Equations

L8050, Y X)= Al|s — diag(0)Y**||?
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MSE Term

+ Penalize infeasible power flow
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g



Evaluation
Based on the IEEE-

37 bus feeder

~50% of the buses
inject power

0035



Available Data

¢ NREL Provided us with
e One photovoltaic panel production (active power) — sampling rate of 1 Hz
o Eight real usage of houses (active power) — sampling rate of 1 Hz

¢ Processing
e Randomly allocated to buses

e Generated corresponding reactive power
e Smoothed the data, using a moving-average 60-second window, and down-sampled

o Used MATPOWER to solve the Power Flow Equations (AC model) and obtain voltages

¢ Overall, acquired a full week of data (~ )
e 90% of the T-long sequences used for training

e The rest used for validation



Available Data - Power

¢ Arbitrarily assigned different nodes o\ foo —siv

Reference Bus 4,

with data based on the real-world
measurements provided by NREL
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Available Data

¢ Used MATPOWER to calculate the time-series of the complex voltages, which satisfies the
Power-Flow Equations, to complete the dataset needed for training and validation

- . Training
PFE (AC), aming
Pre-Processing including Y Set
Real Measurements
Active power Completion of Reactive {i(,)} {i( T)‘ \'_( T)} Dataset
P Power, Smoothened, j——p \[atPower [e—————p . - )
Downsampling Construction
Test
. Set
1 05V»oltage Magnitude Voltage Phase
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~~~~~~~~~ Bus 2 (load) --——Bus 2 (load)
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Training

* We trained the setup for different levels of observability: 49%, 39%, 25%, 17%, and 8%

* This mimics actual attacks/malfunctions

Ns(t) + Ny(t)  28+0

O(Ns(2), Np(t)) = 2N - 362

= 0.39

* 90% used for training

Example of an observability value of 39%:
 10% used for validation * 0/36 voltages are known at time (z),
» 28/36 power-values are known at time (7).

* We use 36 instead of 37 nodes since one of the nodes is a behind a transformator.



Numerical Results — Comparison with WLS and Sensitivity to T
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Numerical Results — Sensitivity to A
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Ongoing Work — Applying the Method to a Sub-transmission
Network within the DOE AURORA Project
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Summary and Ongoing Work

Expanded previous work on transmission systems and static model to distribution system with
streaming data

Developed a hybrid model and data driven approach to recover missing data in distribution
grid

Has a “black box” nature but takes the power flow equations and system parameters

into account

Showed that it works well with real-world data

Future/ongoing work:
= Improve the DNN to accommodate a general training set, rather than a training set per scenario

= Evaluate the method with the Holly Cross Energy distribution grid as part of the AURORA project
= Extend to false data injection



