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Abstract.  The topological hypothesis claims that phase transitions in a 
classical statistical mechanical system are related to changes in the topology 
of the level sets of the Hamiltonian. So far, the study of this hypothesis has 
been restricted to continuous systems. The purpose of this article is to explore 
discrete models from this point of view. More precisely, we show that some 
form of the topological hypothesis holds for a wide class of discrete models, and 
that its strongest version is valid for the Ising model on Zd with the possible 
exception of dimensions d = 3, 4.
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1.  Introduction

In 1997, a new and unconventional approach to the study of equilibrium phase trans
itions was suggested by Caiani et  al [9]. In a nutshell, the idea of this topological 
approach is to consider the configuration space ΩΛ as a manifold, the Hamiltonian 
H : ΩΛ → R as a Morse function, and to relate the appearance of a phase transition 
(understood as a non-analyticity of some thermodynamic function, usually the pres
sure) to a change in the topology of the manifold MΛ(u) = {ω ∈ ΩΛ : H(ω) � |Λ|u} as 
the number |Λ| of particles tends to infinity. Originally supported only by numerical 
evidence [9, 20] and phrased in rather vague terms, this hypothesis was later form
ulated as a series of conjectures commonly refered to as the topological hypothesis, and 
some of these conjectures were proven to hold for the mean-field XY-model [10] and the 
mean-field k-trigonometric model [4] (see also [6, 15, 48]). Furthermore, Franzosi and 
Pettini proved that for a certain class of models, a topological change within the family 
of manifolds {MΛ(u)}u∈R with |Λ| large is a necessary condition for a phase transition to 
occur [18, 19] (see also [24, 31, 40]). However, it soon became clear that the initial hope 
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of this topological approach providing a general description of phase transitions was 
over-optimistic. Indeed, none of the various incarnations of the topological hypothesis 
holds true for arbitrary systems (see e.g. [5, 29, 44]). We refer the reader to the beauti-
ful survey [30] and references therein for more details (see also [8]).

To this day, the study of the topological hypothesis has been restricted to con-
tinuous models, i.e. models where the manifold ΩΛ has positive dimension. However, 
discrete spaces are (zero-dimensional) manifolds in their own right, so it makes perfect 
sense to explore the validity of the topological hypothesis for discrete models. This is 
the aim of the present article.

To be more precise, we study the strongest version of the topological hypothesis, 
which equates a phase transition at inverse temperature βc > 0 with a non-analyticity 
of the logarithmic density σ of the Euler characteristic of MΛ(u) at the corresponding 
energy uc ∈ R (see section 2 below). For this statement to make sense, we need this 
correspondence between inverse temperatures and energies to be one-to-one; in other 
words, we need equivalence of ensembles to hold (see section 3), and the pressure to 
be dierentiable and strictly convex. In our main theorem, we show that under some 
hypotheses that ensure the occurence of this situation, a slightly modified version of the 
topological hypothesis holds true (theorem 4.5). We then apply this result to the fer-
romagnetic nearest neighbour Ising model on Zd, where the full topological hypothesis 
is shown to hold with the possible exception of dimensions d = 3, 4.

Obviously, a discrete space is topological in the technical sense of the word, but not 
so much in the ‘intuitive’ sense. For this reason, it is fair to say that there is not much 
topology left in the topological hypothesis for discrete spaces. These semantic consider-
ations aside, proving the validity of this hypothesis for a wide class of discrete models 
provides an indisputable argument in favor of the topological approach.

This article is organised as follows. Section 2 contains the definitions and terminol-
ogy necessary for the statement of the topological hypothesis. In section 3, we recall 
classical results on the equivalence of ensembles for lattice spin models. Finally, in sec-
tion 4, we relate the function σ to the entropy, we study the strong convexity of the 
pressure, prove our main result, and illustrate it with the example of the ferromagnetic 
Ising model.

2. The topological hypothesis

In this somewhat dry preliminary section, we recall the definitions and terminology 
necessary for the statement of the topological hypothesis in the general setting of spin 
systems, following [30, 50]. We refer the interested reader to these articles for further 
details.

2.1. Thermodynamic equivalence of ensembles

We consider a spin system of a finite set Λ of classical particles. Such a system is char-
acterized by a Hamiltonian

HΛ : ΩΛ → R

https://doi.org/10.1088/1742-5468/ab0c14
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defined on the configuration space ΩΛ = SΛ, where S is some measured space called 
the spin space. We will denote by ρΛ the corresponding product measure on ΩΛ, with 

respect to which HΛ is assumed to be measurable. Given a spin configuration ω ∈ ΩΛ, 

the quantities HΛ(ω) and HΛ(ω)
|Λ|  are called the energy and energy per particle of ω, 

respectively.
From this data, two thermodynamic functions can be defined. On the one hand, the 

pressure is the function of the inverse temperature β ∈ R given by

ψ(β) := lim
|Λ|→∞

− 1

|Λ|
log

∫

ΩΛ

e−βHΛ(ω)dρΛ(ω).

On the other hand, the microcanonical entropy is the function of the energy per particle 
u ∈ R given by

s(u) := lim
r→0

lim
|Λ|→∞

1

|Λ|
log ρΛ

{
ω ∈ ΩΛ :

HΛ

|Λ|
∈ (u− r, u+ r)

}
.

Under some assumptions (see e.g. [47], and section 3.2 below), it can be shown that 
if the function s exists, then ψ also exists and is equal to the Legendre–Fenchel trans-
form4 of s:

ψ(β) = s∗(β) := inf
u∈R

{βu− s(u)}.

If s is concave, then the inverse equality ψ∗ = s also holds and thermodynamic equiva-
lence of ensembles is said to occur [50]. Assuming further that s and ψ are (continu-
ously) dierentiable, the functions s′ and ψ′ are inverses of each other. This provides 
a one-to-one correspondence between inverse temperatures and energies per particle.

2.2. The topological hypothesis

The system is said to undergo a phase transition at inverse temperature β > 0 if the 
pressure ψ is not smooth at β , i.e. if it is not infinitely many times dierentiable at β . 
Following a slightly outdated terminology, we will say that this phase transition is of 
order p � 1 if ψ is ( p− 1) times but not p  times dierentiable at β .

Let us now assume that the measured space S is endowed with a topology turning 
it into a compact Hausdor space, so that the Hamiltonian HΛ : ΩΛ → R is continuous 
with respect to the corresponding product topology on ΩΛ = SΛ. For any u ∈ R, con-
sider the subspace

MΛ(u) := {ω ∈ ΩΛ : HΛ(ω) � |Λ|u}.

Note that this space is closed in the compact space ΩΛ, and therefore itself compact.
As mentioned in the introduction, the idea of the topological hypothesis is to relate 

a phase transition at inverse temperature β with a change in the topology of MΛ(u) at 
the corresponding energy u = ψ′(β), for |Λ| → ∞. In its strongest form, it asserts that 

4 The standard form of the Legendre–Fenchel transform is s̃(β) := supu∈R{βu− s(u)}, which is related to s* via 
s̃(β) = −(−s)∗(−β). Also, the standard definition of the pressure is p(β) = −β−1ψ(β). Following [50], we use these 
slightly modified conventions to avoid carrying signs around. Note that ψ(β) and f(β) = β−1ψ(β) are also com-
monly referred to as the free energy.

https://doi.org/10.1088/1742-5468/ab0c14
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this change in topology is apparent in a very coarse topological invariant, namely the 
Euler characteristic.

Recall that if a topological space M is (of the homotopy type of) a finite CW-complex, 
then its Euler characteristic is defined as

χ(M) :=
∑
i�0

(−1)i |{i− dimensional cells of M}|.

It is a remarkable fact that this integer does not depend on the cellular structure on M, 
but only on its homotopy type (see [27, chapter 2]). Note that in the case of a finite dis-
crete space, the Euler characteristic is nothing but the cardinality of the underlying set.

Let us now assume that for each u, the compact space MΛ(u) has the homotopy 
type of a finite CW-complex. This assumption is quite natural: for example, it is 
satisfied whenever S is a compact manifold and HΛ a Morse function on the manifold 
ΩΛ (see [41]). Then, one can define the logarithmic density of the Euler characteristic 
of MΛ(u) as

σ(u) := lim
|Λ|→∞

1

|Λ|
log |χ(MΛ(u))|.

We are finally ready to formulate precisely the topological hypothesis.

Hypothesis 2.1.  There is a phase transition at inverse temperature β = s′(u) if and 
only if the function σ is not smooth at u = ψ′(β).

This statement corresponds to conjectures V.1 and VII.2 of [30], and can be thought 
of as the strongest among the many incarnations of the topological hypothesis. The aim 
of the present note is to study its validity for a wide class of discrete lattice spin models.

3. Equivalence of ensembles for lattice models

In this section, we focus our attention on lattice models with Hamiltonian of a specific 
type, namely translation invariant and absolutely summable (section 3.1). For these 
models, thermodynamic equivalence of ensembles has been established in full math-
ematical rigour. In section 3.2, we briefly recall these classical results, which will play 
a crucial role in section 4.

3.1. Lattice spin models

Let us start by recalling the general setting of lattice spin models, referring to [22] for 
a more complete and formal description.

Let the spin space S be a compact Hausdor space endowed with its Borel σ-alge-
bra and a finite measure. For any finite subset Λ of Zd, we shall write (ΩΛ,FΛ, ρΛ) for 
the corresponding product measured space, and denote by ω = (ωx)x∈Λ the elements of 
ΩΛ = SΛ.

https://doi.org/10.1088/1742-5468/ab0c14
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Fix an interaction potential Φ = {ΦA}, i.e. an FA-measurable function ΦA : ΩA → R 
for each non-empty finite subset A of Zd. We will assume translation invariance of this 
(interaction) potential, a fact formalised by the equality

ϑxΦA = ΦϑxA : ΩϑxA → R

for all x ∈ Zd and finite A ⊂ Zd, where ϑxA = {y + x : y ∈ A} and ϑxΦA(ω) = ΦA(ϑxω) 
with (ϑxω)y = ωy−x for ω ∈ ΩϑxA and y ∈ A. We will also assume this potential to be 
absolutely summable, i.e. to satisfy

‖Φ‖ :=
∑
A�0

‖ΦA‖ < ∞,

where ‖ΦA‖ = supω∈ΩA
|ΦA(ω)|. The associated Hamiltonian HΛ : ΩΛ → R is defined by

HΛ(ω) =
∑
A⊂Λ

ΦA(ωA),

where ωA denotes the restriction of ω ∈ ΩΛ to ΩA. In this setting, the quantity 

hΛ(ω) :=
HΛ(ω)
|Λ|  is called the energy per site of ω ∈ ΩΛ.

Let us illustrate these concepts with a classical example.

Example 3.1.  Consider the spin set S = {−1, 1} endowed with the discrete topology 
and the counting measure. Fix a family of real coupling constants (Jx,y ) indexed by 
{x, y} ⊂ Zd with x �= y together with a real-valued magnetic field (hx)x∈Zd. Define the 
potential Φ = {ΦA} by

ΦA(ω) =



−Jx,y ωxωy for A = {x, y} ⊂ Zd with x �= y,

−hx ωx for A = {x} ⊂ Zd,

0 else.

This potential is translation invariant if and only if Jx,y = J0,y−x and hx = h0 for all 
x, y ∈ Zd, and absolutely summable exactly when 

∑
x∈Zd |J0,x| is finite. The associated 

Hamiltonian is

HΛ(ω) = −
∑

{x,y}⊂Λ,x �=y

Jx,y ωxωy −
∑
x∈Λ

hx ωx.

The resulting model is the celebrated Ising model on Zd [28]. It is called ferromagnetic 
if Jx,y � 0 for all x, y ∈ Zd, finite-range if there exists R  >  0 such that Jx,y   =  0 for all 
x, y ∈ Zd with |x− y| > R, and nearest neighbour if it is finite-range with R  =  1.

3.2. Equivalence of ensembles

We now state in a precise way the equivalence of ensembles in the general setting of 
section 3.1. These type of results are classical, going back to the early days of rigorous 
statistical mechanics [33, 46].

For definiteness, let Λn denote the hypercube [−n,n]d ∩ Zd. We use the short-
hand notation (Ωn,Fn, ρn) for the corresponding sequence of measured spaces and 
Hn(ω),hn(ω) for the energy and energy per site of ω ∈ Ωn. Since the potential is 

https://doi.org/10.1088/1742-5468/ab0c14
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translation invariant and absolutely summable, all the maps hn take values in the com-
pact interval I := [−‖Φ‖, ‖Φ‖].

Let Mn denote the finite measure on the Borel sets of I given by Mn := ρn ◦ h−1
n . In 

other words, we set

Mn(B) = ρn

{
ω ∈ Ωn :

Hn(ω)

|Λn|
∈ B

}

for any Borel subset B of I.

Proposition 3.2. 

	(i)	� For any interval B ⊂ I , the limit

m(B) := lim
n→∞

1

|Λn|
log(Mn(B))

		  exists in R := R ∪ {−∞,∞}.

	(ii)	� For all u ∈ I , the limit

s(u) := lim
r→0

m ((u− r, u+ r))

		  exists, defining a concave function s : I → R.

	(iii)	�For any interval B ⊂ I , we have m(B) = supx∈B s(x).

	(iv)	� The pressure ψ and the entropy s are Legendre–Fenchel duals.

As mentioned above, these results have their origins in the pioneering work of 
Ruelle [46] and Lanford [33]. In the case of discrete spin models (which is the only case 
we will use), these statements can be found in sections 2 and 3 of [39]. In the (perhaps 
too) general setting of section 3.1, they follow from corollaries 3.1, 5.1 and lemma 5.2 
of [36] (see also [37]).

4. The topological hypothesis for discrete spin models

In this section, we state and prove our main results which deal with discrete spin mod-
els. We begin in section 4.1 by showing that the function σ coincides with the entropy 
s for positive temperatures. In section 4.2, we prove that under some hypothesis on 
the potential, the negative5 of the pressure is strongly convex. Section 4.3 contains 
our main result, which can be considered as some modified version of the topological 
hypothesis valid for a wide class of discrete models. Finally, in section 4.4, we show that 
the original topological hypothesis (hypothesis 2.1) holds for the ferromagnetic nearest 
neighbour Ising model on Zd, with the possible exception of dimensions 3 and 4.

5 Recall the unconventional sign in our definition of the pressure.

https://doi.org/10.1088/1742-5468/ab0c14
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Throughout this section, we assume that the spin space S is finite, endowed with 
the discrete topology and the counting measure.

4.1. The function σ and the entropy

We begin this section  with an easy but fundamental result: while s is defined as 
Boltzmann’s surface entropy, the function σ can be understood as Gibbs’ volume 
entropy in the case of discrete models.

To make this statement precise, let us assume that the eective domain of s, defined 
as {u ∈ I : s(u) > −∞}, consists of a non-empty open interval (a, c) ⊂ I . (In degenerate 
cases, it could be reduced to a point.) Let us also denote by b ∈ (a, c) a real number 
where the concave function s reaches its maximum.

Lemma 4.1.  The logarithmic density of the Euler characteristic σ(u) exists for all 
u  >  a; it coincides with s(u) for u ∈ (a, b] and is equal to s(b) = log(|S|) for u � b  
(see figure 1).

Proof.  Recall that the function σ is defined by σ(u) = limn→∞
1

|Λn| log |χ(Mn(u))|, 
where

Mn(u) = {ω ∈ Ωn : Hn(ω) � |Λn|u} = h−1
n ((−∞, u]) = h−1

n ([−‖Φ‖, u]).

Since Mn(u) is finite and discrete, its Euler characteristic is simply its cardinality. The 
measure ρn being the counting measure, we obtain

χ(Mn(u)) = |h−1
n ([−‖Φ‖, u])| = ρn ◦ h−1

n ([−‖Φ‖, u]) = Mn([−‖Φ‖, u]).

By proposition 3.2, we have

σ(u) = lim
n→∞

1

|Λn|
logMn([−‖Φ‖, u]) = m([−‖Φ‖, u]) = sup

x∈[−‖Φ‖,u]
s(x) ∈ R

for all u ∈ I = [−‖Φ‖, ‖Φ‖]. Since s is concave and finite on (a, c) and reaches its maxi-
mum at b ∈ (a, c), it follows that σ(u) = s(u) for all u ∈ (a, b] and σ(u) = s(b) for u � b. 
The definition of σ implies that σ(u) = log(|S|) for u � ‖Φ‖, concluding the proof.� □ 

Although very elementary, this observation is already a significant step towards 
the topological hypothesis for discrete models. Indeed, as the function σ coincides with 
the entropy on the interval (a, b), it is the Legendre–Fenchel dual of the pressure ψ 
restricted to positive temperatures. Hence, a phase transition at some inverse temper
ature βc > 0 is likely to correspond to a non-smooth point uc ∈ (a, b) of σ = s, and 
vice-versa.

However, the situation is not as simple in general. As an easy counterexample, 

consider the pressure given by ψ(β) = ucβ − 3
4
|β − βc|4/3. This function is not twice 

dierentiable at βc, while its Legendre–Fenchel dual σ satisfies σ′(u) = βc − (u− uc)
3, 

and is therefore smooth (with σ′′(uc) = 0). The reverse phenomenon could a priori also 
happen, namely the existence of a non-smooth point uc of σ that is not reflected by any 

https://doi.org/10.1088/1742-5468/ab0c14
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phase transition, but only by the second derivative of ψ vanishing at the corresponding 
βc.

Therefore, more work is required to prove the topological hypothesis for discrete 
models. This is the aim of the next section.

4.2. Strong convexity of the pressure

The negative of the pressure as defined in section 2.1 is the limit of convex functions, 
so it is always convex. For some general class of models, it can be shown to be strictly 
convex (see [26] and [22, corollary 16.15]). Unfortunately, this does not imply that 
ψ′′(β) never vanishes when defined, a condition needed for our main result to hold. For 
this, we need the notion of ‘strong convexity’.

Recall that a map f : (a, b) → R is strongly convex with parameter c  >  0 if

f(tx+ (1− t)y) � tf(x) + (1− t) f(y)− c

2
t(1− t)|x− y|2

for all x, y ∈ (a, b) and t ∈ [0, 1]. Note that this condition is equivalent to the function 
g : (a, b) → R defined by g(x) = f(x)− c

2
x2 being convex. In particular, this implies the 

inequality f ′′(x) � c > 0 for all x ∈ (a, b) such that f ′′(x) exists.
To ensure that −ψ is strongly convex, we will require the potential Φ = {ΦA} to be 

non-constant, meaning that there exists A ⊂ Zd with ΦA non-constant. This condition 
is clearly necessary: if all ΦA are constant, then the pressure is an ane function (given 
by −ψ(β) = log(|S|)− β

∑
A�0 ΦA) and therefore not strongly convex.

We will also require the potential to be positively correlated, in the sense that

CovΛ,β(ΦA, ΦB) := 〈ΦAΦB〉Λ,β − 〈ΦA〉Λ,β 〈ΦB〉Λ,β � 0

for all A,B ⊂ Λ and all β > 0. Here, we use the customary notation 〈 f〉Λ,β for the 
expected value of the function f : ΩΛ → R with respect to the Gibbs distribution µΛ,β 
on ΩΛ, that is

Figure 1.  Plot of the logarithmic density of the Euler characteristic σ and of 
the entropy s. The intervals (a, b) and (b, c) correspond to positive and negative 
temperatures, respectively.

https://doi.org/10.1088/1742-5468/ab0c14
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〈 f〉Λ,β :=
∑
ω∈ΩΛ

f(ω)
e−βHΛ(ω)

ZΛ,β

, ZΛ,β :=
∑
ω∈ΩΛ

e−βHΛ(ω).

Also, we make a slight abuse of notation and use the symbol ΦA both for the map 
ΦA : ΩA → R and for its extension ΩΛ → R given by ω �→ ΦA(ωA), where ωA denotes the 
restriction of ω ∈ ΩΛ to ΩA.

Let us illustrate this condition with an example.

Example 4.2.  Fix a positive integer k and set S = {−k,−k + 2, . . . , k − 2, k}. Let 
Φ = {ΦA} be the potential given by ΦA = −JAσA, where σA(ω) =

∏
x∈A ωx and JA is a 

non-negative real number. Then, for any A,B ⊂ Λ and β > 0, we have

CovΛ,β(ΦA, ΦB) = 〈ΦAΦB〉Λ,β − 〈ΦA〉Λ,β 〈ΦB〉Λ,β = JAJB

(
〈σAσB〉Λ,β − 〈σA〉Λ,β 〈σB〉Λ,β

)
� 0

by Griths’ second inequality [25]. Therefore, this potential is positively correlated. 
This holds in particular for the ferromagnetic Ising model (with h � 0), which corre-
sponds to the case k  =  1 and JA  =  0 for |A| > 2.

Let us quickly mention other natural classes of examples. If S is a finite abelian 
group and −ΦA : ΩA → R is a positive definite function for all A ⊂ Zd, then the poten-
tial Φ = {ΦA} is positively correlated by Ginibre’s inequality, see [23, example 4]. (Note 
that the case S = Z2 and −ΦA = JAσA with JA � 0 once again corresponds to the Ising 
model.) Also, if S is a finite distributive lattice and all the maps ΦA are ‘submodular’ 
and monotone increasing (or all monotone decreasing), then Φ = {ΦA} is positively cor-
related by the FKG inequality [17].

We are ready to state the main result of this section.

Proposition 4.3.  Consider a lattice spin model with finite spin space endowed with the 
counting measure. Assume that the potential is translation invariant, absolutely summa-
ble, non-constant and positively correlated. Then, for any bounded interval (a, b) ⊂ (0,∞), 
there exists c  >  0 such that −ψ : (a, b) → R is strongly convex with parameter c. In par
ticular, the second derivative of ψ is strictly negative whenever defined.

We will need one preliminary result.

Lemma 4.4.  Let S be finite and endowed with the counting measure and let Φ be trans-
lation invariant and absolutely summable. If A ⊂ Zd is such that ΦA is non-constant, 
then there exists a continuous map c : [0,∞) → (0,∞) such that VarΛ,β(ΦA) � c(β) for 
all β � 0 and all Λ containing A.

Proof of lemma 4.4.  As a first step, let us show that for any λ ∈ ΦA(ΩA) and any 
Λ containing A, there exists a continuous map cλ : [0,∞) → (0,∞), independent of Λ, 
such that

µΛ,β(ΦA = λ) � cλ(β) (�)

for all β � 0. To check this claim, let us fix ω ∈ ΩΛ\A and decompose the Hamiltonian 
as

https://doi.org/10.1088/1742-5468/ab0c14
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HΛ(ω) = ΦA(ωA) +
∑

B⊂Λ,B �=A
B∩A�=∅

ΦB(ωB) +
∑
C⊂Λ

C∩A=∅

ΦC(ωC).

Since the potential is translation invariant, the second term is bounded by∣∣∣
∑

B⊂Λ,B �=A
B∩A�=∅

ΦB(ωB)
∣∣∣ �

∑
B⊂Λ

B∩A�=∅

‖ΦB‖ � |A|
∑
B�0

‖ΦB‖ = |A| ‖Φ‖,

which is finite since Φ is absolutely summable. Therefore, writing K(β) for eβ|A|‖Φ‖ and 
c(ω) for e−β

∑
C⊂Λ,C∩A=∅ ΦC(ωC), we have the inequalities

e−βΦA(ωA) K(β)−1 c(ω) � e−βHΛ(ω) � e−βΦA(ωA) K(β) c(ω).

Using the notation Ωω
Λ = {ω ∈ ΩΛ |ωΛ\A = ω}, it follows that

µΛ,β(ΦA = λ |ωΛ\A = ω) =

∑
ω∈Ωω

Λ,ΦA(ωA)=λ e
−βHΛ(ω)

∑
ω∈Ωω

Λ
e−βHΛ(ω)

�

∑
ω∈Ωω

Λ,ΦA(ωA)=λ e
−βλ K(β)−1 c(ω)∑

ω∈Ωω
Λ
e−βΦA(ωA) K(β) c(ω)

=
|{ω ∈ ΩA |ΦA(ω) = λ}|

K(β)2
∑

ω∈ΩA
e−β(ΦA(ω)−λ)

=: cλ(β).

Since the map cλ defined by the last equality is continuous, positive, and depends nei-
ther on Λ nor on ω , the inequality (�) follows and the claim is proved.

Since ΦA : ΩA → R is not constant, there exists λ1 �= λ2 in ΦA(ΩA). Hence, we have 
the inequalities

VarΛ,β(ΦA) =
∑
ω∈ΩΛ

(
ΦA(ωA)− 〈ΦA〉Λ,β

)2

µΛ,β(ω)

=
∑

λ∈ΦA(ΩA)

(
λ− 〈ΦA〉Λ,β

)2

µΛ,β(ΦA(ωA) = λ)

(�)

�
(
λ1 − 〈ΦA〉Λ,β

)2

cλ1(β) +
(
λ2 − 〈ΦA〉Λ,β

)2

cλ2(β)

�
1

2
(λ1 − λ2)

2 min{cλ1(β), cλ2(β)} =: c(β),

and the lemma is proved.� □ 

Proof of proposition 4.3.  By definition, the pressure is equal to ψ(β) = lim|Λ|→∞ ψΛ(β), 

with ψΛ(β) = − 1
|Λ| logZΛ,β and ZΛ,β =

∑
ω∈ΩΛ

e−βHΩ(ω). Direct computations give

−ψ′′
Λ(β) =

1

|Λ|

(〈
H2

Λ

〉
Λ,β

− 〈HΛ〉2Λ,β
)
=

1

|Λ|
VarΛ,β(HΛ) =

1

|Λ|
VarΛ,β

(∑
A⊂Λ

ΦA

)
.
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Since the potential is assumed to be positively correlated, we have

VarΛ,β
(∑
A⊂Λ

ΦA

)
=

∑
A⊂Λ

VarΛ,β(ΦA) +
∑

A,B⊂Λ
A�=B

CovΛ,β(ΦA, ΦB) �
∑
A⊂Λ

VarΛ,β(ΦA).

By assumption, there exists A0 ⊂ Zd such that ΦA0 is not constant. Assuming that Λ 
is the union of translated copies of A0 (i.e. of subsets of Zd of the form A0  +  x with 
x ∈ Zd), translation invariance of the potential now implies

−ψ′′
Λ(β) �

1

|Λ|
∑
A⊂Λ

A=A0+x

VarΛ,β(ΦA) = VarΛ,β(ΦA0)
|{A ⊂ Λ |A = A0 + x}|

|Λ|
�

VarΛ,β(ΦA0)

|A0|
.

By lemma 4.4, we conclude that there exists a continuous map c : [0,∞) → (0,∞), 
independent of Λ, such that −ψ′′

Λ(β) � c(β) for all β � 0. This implies that the func-
tion −ψΛ is strongly convex on any bounded interval (a, b) ⊂ [0,∞), with parameter 
minβ∈[a,b] c(β) > 0. Since this parameter is independent of Λ, the same holds true for the 
limit −ψ(β) = lim|Λ|→∞ −ψΛ(β). This concludes the proof.� □ 

4.3. The topological hypothesis for discrete spin models

We are finally ready to state our main result, whose proof is now straightforward.

Theorem 4.5.  Consider a lattice spin model with finite spin space endowed with the 
discrete topology and the counting measure. Assume that the potential is translation in-
variant, absolutely summable, non-constant and positively correlated, and that the system 
does not exhibit any first-order phase transition.

Then, there exists a < b ∈ R such that the following statements hold:

	(i)	� The pressure ψ : (0,∞) → R and entropy s : (a, b) → R are dierentiable and Leg-
endre–Fenchel duals, so ψ′ and s′ are mutually inverse continuous maps.

	(ii)	� The function σ coincides with s on (a, b).

		  Furthermore, for any β = s′(u) > 0:

	(iii)	�The system undergoes a second order phase transition at β if and only if σ is not 
twice dierentiable at u or σ′′(u) = 0.

	(iv)	� The system undergoes a phase transition of order p   >  2 at β if and only if σ is 
( p− 1) but not p  times dierentiable at u and σ′′(u) �= 0.

Proof.  Since the potential is translation invariant and absolutely summable, proposi-
tion 3.2 states that the entropy s : I → R and the pressure ψ : R → R are Legendre–
Fenchel duals. By hypothesis, ψ is dierentiable, hence continuously dierentiable since 
it is concave. By proposition 4.3, it is also strictly concave on R. This implies that its 
dual s = ψ∗ is (continuously) dierentiable on its eective domain {u ∈ I : s(u) > −∞} 
which consists of a non-empty open interval (a, c) ⊂ I (see e.g. [45]). Therefore, the 
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maps ψ′ : R → (a, c) and s′ : (a, c) → R are strictly decreasing continuous functions 
which are mutual inverses. In particular, the real number a (resp. c) is nothing but the 
limit of ψ′(β) as β tends to ∞ (resp. to −∞). Writing b for ψ′(0) ∈ (a, c), the first point 
is proved. Note that s′(b) = (ψ′)−1(b) = 0, so s has a unique maximum at u  =  b. We are 
therefore in the setting of lemma 4.1, which implies the second point.

As a consequence of points (i) and (ii), the continuous maps σ′ = s′ : (a, b) → (0,∞) 
and ψ′ : (0,∞) → (a, b) are mutual inverses, with ψ′′(β) nowhere zero by proposition 
4.3. This easily implies points (iii) and (iv), as we now demonstrate. Fix β > 0 and 
set u := s′(β) = σ′(β) ∈ (a, b). If the system undergoes a second order phase transition 
at β , then ψ′ is not dierentiable at β ; since ψ′ and σ′ are inverses, either σ′ is not 
dierentiable at u or σ′′(u) vanishes. Conversally, if ψ′ is dierentiable at β , then σ′ is 
dierentiable at u since ψ′′(β) does not vanish. Furthermore, the chain rule applied to 
ψ′ ◦ σ′ = id  leads to the equality ψ′′(β)σ′′(u) = 1, so σ′′(u) does not vanish either. This 
shows point (iii). Finally, if the system undergoes a phase transition of order p   >  2 at 
β , then ψ′ is ( p− 2) but not ( p− 1) times dierentiable at β and its derivative does not 
vanish at β ; by the inverse function theorem, the function σ′ has the same properties. 
Exchanging the roles of ψ′ and σ′ concludes the proof.� □ 

4.4. The Ising model

As a motivating example, we now apply theorem 4.5 to the ferromagnetic Ising model 
on Zd. Our understanding of this model depends greatly on the dimension, so we shall 
present the results in the form of a discussion culminating in the main statement: the 
validity of the original topological hypothesis for the nearest neighbour ferromagnetic 
Ising model on Zd, with the possible exceptions of dimensions d = 3, 4 (theorem 4.6).

As usual, we shall assume throughout this section  that the coupling constants 
(Jx,y)x,y∈Zd are translation invariant, absolutely summable and ferromagnetic (recall 
example 3.1), but also satisfy the following property: for all x ∈ Zd, there exists 
0 = x0, . . . , xm = x such that Jx0,x1 · · · Jxm−1,xm > 0. We also fix a magnetic field h ∈ R. 
Note that the pressure ψ is unchanged when replacing h with  −h, so we can assume 
h � 0 without loss of generality.

The potential corresponding to these coupling constants and magnetic field is trans-
lation invariant, absolutely summable and non-constant by assumption, and positively 
correlated by example 4.2 (recall that Jx,y � 0 and h � 0). Furthermore, by [43, cor-
ollary 2] (see also [3]), the four conditions on the coupling constants stated above 
imply that the model does not undergo a first-order phase transition. Therefore, the 
hypothesis of theorem 4.5 (and proposition 4.3) are satisfied, so ψ′ : (0,∞) → (a, b) and 
σ′ : (a, b) → (0,∞) are mutual inverses with ψ′′ never vanishing. (For the Ising model, 
one easily checks that b = ψ′(0) = 0.)

We now start the aforementioned case by case discussion.

Non-vanishing magnetic field.  Let us first assume that the magnetic field h ∈ R is 
non-zero. Then, by [34, p 109], the pressure ψ is analytic on (0,∞). Since σ′ and ψ′ 
are inverse with ψ′′ �= 0, it follows that σ is analytic on (a, 0). Therefore, hypothesis 2.1 
holds (trivially) in this case.
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From now on, we assume that the magnetic field is equal to zero.

The critical inverse temperature.  For a wide class of Ising models, including the ones 

under study in this section, there exists a critical inverse temperature βc ∈ [0,∞] so that 

the spontaneous magnetization 〈σ0〉+β  vanishes for β < βc while 〈σ0〉+β > 0 for β > βc. 
Here, 〈σ0〉+β  denotes the expected value of σ0 with respect to the infinite volume Gibbs 

measure with plus boundary condition (see [21]).
The pressure ψ is expected to be analytic on (0,∞) \ {βc}, with the specific heat 

−ψ′′(β) exhibiting a special type of singularity at βc (see e.g. [16], and details below). As 
we shall see, this would imply the validity of the topological hypothesis. More precisely, 
we could conclude that σ is analytic on (a, 0) \ {uc} and not smooth at uc := ψ′(βc). 
However, these facts are proven only in some cases, as we now explain.

Dimension one.  Let us consider the Ising model on Z. In the finite-range case, we have 
βc = ∞ and the pressure is known to be analytic on (0,∞) (see e.g. [46]). It follows that 

σ is analytic on (a, 0) and hypothesis 2.1 is valid. The same result is expected to hold 

for coupling constants satisfying 
∑

x∈Z xJ
2
0,x < ∞ (see [46]).

In the remaining cases, i.e. when coupling constants decay as Jx,y ∼ |x− y|−α with 
1 < α � 2, the critical inverse temperature is known to be finite and strictly positive [2, 
14]. However, the behavior of ψ′′ at this critical point seems unknown, and we cannot 
conclude that hypothesis 2.1 holds.

Dimension two.  Consider the two-dimensional nearest neighbour Ising model, with 
coupling constants J1 and J2. In a classical work, Onsager [42] was able to compute the 
pressure as

−ψ(β) = log 2 +
1

2π2

∫ π

0

∫ π

0

logP (θ1, θ2)dθ1dθ2,

where

P (θ1, θ2) = cosh(2βJ1) cosh(2βJ2)− sinh(2βJ1) cos θ1 − sinh(2βJ2) cos θ2.

This leads to the identification of the critical inverse temperature βc as the unique 
positive solution to the equation sinh(2βJ1) sinh(2βJ2) = 1. In the case J1 = J2 = 1, the 

solution is given by βc =
1
2
log(

√
2 + 1), a value first predicted in [32].

With the explicit expression above, ψ is easily shown to be smooth at β �= βc, with 
the specific heat having a logarithmic singularity at βc. Therefore, the map ψ′ has a 
singularity of the form ψ′(β) ∼ (β − βc) log |β − βc| at βc. Since the derivative of ψ′ 
never vanishes, the inverse map σ′ = (ψ′)−1 : (a, 0) = (−J1 − J2, 0) → (0,∞) is smooth 
at all u �= uc = ψ′(βc) = J1 cosh(2βcJ2), twice dierentiable at uc (with σ′′(uc) = 0), but 
not three times dierentiable at uc. In particular, hypothesis 2.1 holds.

Note that the same analysis can be performed for any biperiodic planar graph (see 
[11]), and the same conclusion holds. However, the analyticity of ψ seems unknown in 
the general (i.e. not nearest neighbour) case.

Smoothness of the pressure outside the critical point.  In the subcritical regime 

β < βc, exponential decay of the two-point correlation functions 〈σ0σx〉β has been 
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established in [1] for finite-range models (see also [13] for an alternative proof). By  
[35, p 318], this implies that the pressure is smooth for all β < βc. (Note however that 
this is not sucient to conclude that the pressure is analytic.)

In the supercritical regime β > βc, exponential decay of the truncated two-point 

correlation functions 〈σ0σx〉β − 〈σ0〉β 〈σx〉β has been recently proved for finite-range 
models of dimension d � 3, see [12]. Again, by the argument of [35], this shows that 
the pressure is smooth for all β > βc.

In conclusion, the pressure is smooth at β �= βc for finite-range models in dimension 
d � 3. By theorem 4.5, this implies that σ is smooth at all u �= uc = ψ′(βc). To show 
that hypothesis 2.1 holds, it remains to understand the specific heat near the critical 
point.

Specific heat in dimension d � 3.  For nearest neighbour models in dimension d  >  4, 
the specific heat −ψ′′(β) is known to be uniformly bounded [49]. As a consequence, 
since ψ′ and σ′ are mutual inverses, the second derivative σ′′(u) never vanishes. By 
theorem 4.5, it follows that hypothesis 2.1 holds in this case: σ is smooth at all u �= uc 
and smooth at uc if and only if ψ is smooth at βc.

Note that the specific heat is expected to exhibit a jump discontinuity at βc (see  
[16, p 281]). This would imply that σ also has a jump discontinuity at uc, but no proof 
of this statement is currently available.

In dimension d  =  4, the critical exponent α := limβ→βc −
log |ψ′′(β)|
log |β−βc|  is known to vanish 

[49]. Furthermore, the specific heat is conjectured to exhibit a logarithmic singularity 
at βc (see [16, 38]). Hypothesis 2.1 would then hold, but this has not yet been formally 
established.

Finally, very little is known in dimension d  =  3. Numerical experiments [7] give the 
approximative value α ≈ 0.104. Having −ψ′′(β) ∼ |β − βc|−α with α ≈ 0.104 suggests 

σ′(u) ∼ −|u− uc|
1

1−α with 1
1−α

≈ 1.116. If rigorously established, this would imply that 

σ is twice but not three times dierentiable at uc and would confirm the validity of 
hypothesis 2.1 is this dimension as well.

As a consequence of the above discussion, we have proved hypothesis 2.1 for the 
nearest neighbour ferromagnetic Ising model on Zd in all dimensions except d = 3, 4. 
More precisely:

Theorem 4.6.  Consider the translation invariant nearest neighbour ferromagnetic Ising 
model on Zd with non-identically zero coupling constants and arbitrary magnetic field. 
Then, the pressure ψ : (0,∞) → R is smooth at all β �= βc and the function σ : (a, 0) → R 
is smooth at all u �= uc = ψ′(βc). Furthermore, σ is not smooth at uc if and only if ψ is 
not smooth at βc, with the possible exception of dimensions 3 and 4.� □ 

We conclude this note with one last comment. For some discrete spin models, the 
topological hypothesis does not hold in any possible sense. As an easy example of this 
fact, consider the Curie–Weiss model defined by the spin space S = {−1, 1} and the 

Hamiltonian HΛ(ω) = − 1
|Λ|

∑
x,y∈Λ ωxωy. This model is well-known to undergo a phase-

transition at βc =
1
2
 (see e.g. [21, chapter 2]). However, a direct computation shows that 

the function σ is constant (equal to log(2)). Therefore, the non-analytic behavior of the 
pressure is not reflected in any way in σ.
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