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We investigate the scaling properties of the order parameter and the largest nonvanishing Lyapunov exponent
for the fully locked state in the Kuramoto model with a finite number N of oscillators. We show that, for any
finite value of N , both quantities scale as (K − KL)1/2 with the coupling strength K sufficiently close to the
locking threshold KL. We confirm numerically these predictions for oscillator frequencies evenly spaced in
the interval [−1,1] and additionally find that the coupling range δK over which this scaling is valid shrinks
like δK ∼ N−α with α ≈ 1.5 as N → ∞. Away from this interval, the order parameter exhibits the infinite-N
behavior r − rL ∼ (K − KL)2/3 proposed by Pazó [Phys. Rev. E 72, 046211 (2005)]. We argue that the crossover
between the two behaviors occurs because at the locking threshold, the upper bound of the continuous part of
the spectrum of the fully locked state approaches zero as N increases. Our results clarify the convergence to the
N → ∞ limit in the Kuramoto model.
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I. INTRODUCTION

The coupled oscillator model introduced by Kuramoto
in the late 1970s has established itself as a paradigmatic
model for the study of synchronization phenomena, where
it opened a vast area of research. The Kuramoto model
allows to investigate the interplay between the tendency that
individual oscillators have to run at their natural frequency and
a sinusoidal all-to-all coupling which attempts to synchronize
the oscillators [1,2]. Kuramoto elegantly solved the model in
the limit of infinitely many oscillators with natural frequencies
drawn from a Lorentzian distribution, for which he showed that
upon increasing the coupling between oscillators, the system
undergoes a transition from an incoherent disordered phase to a
partially synchronized state with a finite fraction of oscillators
rotating in unison [1–3].

Several evolutions of the original Kuramoto model have
been investigated, including models with different natural
frequency distributions, with couplings defined on a complex
network topology, oscillators with inertia, couplings with
frustration, with time delays, and even negative couplings
to name but a few [4,5]. Such extensions are motivated by
the connection that the Kuramoto model has with several
physical systems, ranging from synchronization phenomena
in biological systems [6,7] to Josephson junction arrays [8],
via synchronous AC electric power systems [9–11].

Recently, there has been a renewed interest in the finite
size behavior of the Kuramoto model [12–16]. The problem
is of interest, because all physically relevant systems and
numerical simulations deal with a finite number N of oscil-
lators, which makes finding solutions to the Kuramoto model
mathematically more involved. In particular, at finite N , the
continuum limit breaks down so that self-consistent equations
for physically relevant quantities such as the order parameter
can no longer be written in a mathematically convenient
integral form. Important steps forward in the understanding
of the finite size Kuramoto model include the description of
the Lyapunov spectrum for the fully locked state as well as
estimates of the critical coupling necessary for synchronization
to occur [12–14]. A complete understanding of the transition
to the infinite-N behavior is however still lacking.

In this work we consider the finite size Kuramoto model
[1,2] on the complete graph G with N nodes and |E | = N (N −
1)/2 edges

θ̇i = ωi + K

N

N∑
j=1

sin(θj − θi), i = 1, . . . ,N, (1)

where θi and ωi are the phases and the natural frequencies
of the oscillators, respectively, and K/N > 0 is the coupling
strength. For natural frequencies defined on a bounded interval,
there exists a critical value of the coupling KN

L for which
the system is in a fully locked state where all oscillators
synchronize, with KN

L → K∞
L as N → ∞ [3,17–19]. For the

particular case of uniformly distributed frequencies, the main
focus of this work, it has been found that the transition from
the incoherent state to full synchrony is of first order [15]. We
investigate the scaling properties of the Lyapunov spectrum
characterizing the linear stability of the fully locked state,
and of the order parameter introduced by Kuramoto [1,2]. We
show that above the locking threshold the largest non vanishing
Lyapunov exponent λ2 scales like λ2 ∼ (K − KL)1/2. Relating
the expression for the order parameter r [Eq. (2) below] to the
Lyapunov exponents, we show that the order parameter also
scales as r − rL ∼ (K − KL)1/2, rL ≡ r(KL) being the order
parameter at the locking threshold. We confirm numerically
these results for uniformly distributed oscillator frequencies.
At first glance, our results disagree with Pazó who obtained
r − rL ∼ (K − KL)2/3 [15]. The two results can be reconciled
once one realizes that Pazó’s calculation is strictly valid for
an infinite number of oscillators only, while our results are
derived for finite N . We find numerically that our finite N

result is always valid close enough to KL. However, its range
of validity δK becomes narrower and narrower as N increases,
with numerical data consistent with δK ∼ N−α,α ≈ 1.5. We
further argue that the crossover is triggered by the dependence
on N of the next largest nonvanishing Lyapunov exponent λ3

at KL, λ3(KL) ∼ N−1/2. Corrections to our results being of
order λ−1

3 , they can no longer be neglected as N → ∞. A side
result of our approach is that all Lyapunov exponents of the
fully locked state of the Kuramoto model are monotonically
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decreasing functions of the coupling strength. This directly
implies that the linear stability of the fully locked state
improves as the oscillator coupling is increased and that if the
locked state exists at K0, it exists at all coupling strengths K �
K0. We note that this result could have been anticipated starting
from the properties of the Lyapunov spectrum discussed in
Ref. [12].

This paper is organized as follows. Section II recalls the
definition of fully locked states in the Kuramoto model.
Sections III and IV present the calculation of the monotonicity
of the Lyapunov exponents as a function of the coupling
constant. Section V discusses the behavior of the largest
nonvanishing Lyapunov exponent and of the order parameter
in the immediate vicinity of the phase-locking threshold for a
large but finite number of oscillators.

II. THE KURAMOTO MODEL

We consider the Kuramoto model defined by Eq. (1) and
ωi ∈ [−1,1] though our results remain valid for distributions
defined on bounded intervals. Introducing the order parameter
[1,2]

reiψ = 1

N

N∑
i=1

eiθi , (2)

Eq. (1) can be rewritten as

θ̇i = ωi + Kr sin(ψ − θi), i = 1, . . . ,N. (3)

Given the invariance of the Kuramoto model under a global
shift of all phases, we can set ψ = 0. Without loss of generality

we consider natural frequencies such that
∑

i ωi = 0, which is
tantamount to considering the system in a rotating frame. For
K > KL, Eq. (1) admits stationary solutions {θ (0)

i } given by

sin
(
θ

(0)
i

) = ωi

Kr
, i = 1, . . . ,N. (4)

They are referred to as fully locked states. The linear stability of
fully locked states is governed by the spectrum of the stability
matrix M, obtained by linearizing Eq. (1) close to {θ (0)

i }, and
defined as

Mij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K

N
cos

(
θ

(0)
j − θ

(0)
i

)
, i �= j,

−K

N

∑
l �=i

cos
(
θ

(0)
l − θ

(0)
i

)
, i = j.

(5)

Since the stationary solutions of Eq. (1) are invariant under
a global rotation of all angles, one of the eigenvalues of M is
identical to zero. A stationary solution {θ (0)

i } is linearly stable
as long as M is negative semidefinite. This condition ensures
that for any small perturbation around {θ (0)

i }, the system’s
state, subject to the dynamics of Eq. (1), returns to {θ (0)

i }
exponentially fast. The eigenvalues λi of M are referred to
as the Lyapunov exponents and the linear stability condition is
expressed as

λ1 = 0 > λ2 � λ3 · · · � λN. (6)

In what follows {u(q)}, q = 1, . . . ,N is the orthonormal basis
of eigenvectors of M defined by Mu(q) = λq u(q). In particular
u(1) = (1, . . . ,1)/

√
N is the eigenvector associated with λ1 =

0.
According to Sylvester’s criterion, a necessary condition for

M to be negative semidefinite is that all its diagonal elements
are negative (i.e., Mii � 0 for all i). This implies [12]

− K

N

∑
l �=i

cos
(
θ

(0)
l − θ

(0)
i

) = −K

N

[
N∑

l=1

cos
(
θ

(0)
l − θ

(0)
i

) − 1

]
� 0

⇒ −Kr cos
(
θ

(0)
i

) + K

N
� 0

⇒ 0 � 1

rN
� cos

(
θ

(0)
i

)
, ∀i = 1, . . . N. (7)

The positivity of the cosine, together with Eq. (4), allows to
rewrite

cos
(
θ

(0)
i

) =
√

1 − (ωi/Kr)2, ∀i = 1, . . . N. (8)

This choice actually corresponds to the unique stable locked
state solution of the all-to-all Kuramoto model [12,13].

III. MONOTONICITY OF THE ORDER PARAMETER

In this section we show that for the stable fully locked state
the magnitude of the order parameter r grows monotonically
as the coupling constant K increases. This result has already
been reported in the literature [12,14], however our calculation

below is based on a novel formalism which we will use later
on. We therefore present it.

We start by expressing the square of the modulus of the
order parameter as

r2 = 1

N2

⎡
⎣N + 2

∑
j>i

cos
(
θ

(0)
j − θ

(0)
i

)⎤⎦, (9)

where the sum runs over all pairs of oscillators. Taking the
derivative of Eq. (9) with respect to K gives

dr

dK
= − 1

rN2

∑
j>i

sin
(
θ

(0)
j − θ

(0)
i

) d

dK

(
θ

(0)
j − θ

(0)
i

)
. (10)
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To obtain an expression for d(θ (0)
j − θ

(0)
i )/dK , we take the

derivative of the stationary condition

0 = ωi + K

N

N∑
j=1

sin
(
θ

(0)
j − θ

(0)
i

)
(11)

with respect to K . This gives

−
N∑

j=1

sin
(
θ

(0)
j − θ

(0)
i

) = K

N∑
j=1

cos
(
θ

(0)
j − θ

(0)
i

)

× d

dK

(
θ

(0)
j − θ

(0)
i

)
⇒ ω/K = M

d

dK
θ (0), (12)

where θ (0) = (θ (0)
1 , . . . ,θ

(0)
N ) and ω = (ω1, . . . ,ωN ). Since M

is singular, we invert Eq. (12) using the Moore-Penrose
pseudoinverse of M defined as

M−1 = T

⎛
⎜⎜⎜⎝

0
λ−1

2
. . .

λ−1
N

⎞
⎟⎟⎟⎠T�, (13)

where T = (u(1), . . . ,u(N)) and M−1 M = M M−1 = I −
u(1)u(1)�. Multiplying Eq. (12) by M−1 yields

d

dK
θ (0) = M−1 ω

K
+ 1

N

d

dK

⎛
⎜⎝

∑
l θ

(0)
l

...∑
l θ

(0)
l

⎞
⎟⎠. (14)

Finally, the difference between any two components of the
expression above is given by

d

dK

(
θ

(0)
j − θ

(0)
i

) = 1

K

∑
k

(
M−1

jk − M−1
ik

)
ωk

= 1

K

∑
k, l�2

(
u

(l)
j − u

(l)
i

) 1

λl

u
(l)
k ωk, (15)

where the terms with
∑

l θ
(0)
l in Eq. (14) drop due to the global

rotational invariance of the Kuramoto model. Injecting this
result into Eq. (10) gives

dr

dK
= − 1

rKN2

∑
j > i

k, l � 2

1

λl

sin
(
θ

(0)
j −θ

(0)
i

)(
u

(l)
j −u

(l)
i

)
u

(l)
k ωk.

(16)

In order to determine the sign of the right-hand side of
Eq. (16) it is useful to introduce the incidence matrix B of the
network. Given a graph G of N nodes and |E | edges and given
an arbitrary orientation of each edge, the incidence matrix
B ∈ IRN×|E | is defined as follows:

Bil =
⎧⎨
⎩

1, if i is the source of edge l,

−1, if i is the sink of edge l,

0, otherwise.
(17)

The product B�θ (0) is a vector in IR|E | whose lth entry is equal
to θ

(0)
i − θ

(0)
j , where i and j are the nodes connected by edge l,

and where the sign of this difference depends on the arbitrary
choice of orientation of the edge (i is the source and j is
the sink in this case). Similarly, given a vector v ∈ IR|E |, the
product Bv is a vector in IRN whose ith entry is equal to the
sum

∑
l ±vl over all edges l connected to node i, and with the

sign ± fixed by the nature (sink or source) of site i.
We then rewrite the Kuramoto model, Eq. (1), in vector

form using the incidence matrix we just introduced

θ̇ = ω − K

N
B · sin(BT θ ), (18)

where we defined sin(x) ≡ (sin(x1), . . . , sin(x|E |)) for x ∈
IR|E |. Thus, for a stationary solution we have

ω = K

N
B · sin(BT θ (0)). (19)

This compact formulation allows to write∑
k

u
(l)
k ωk = K

N
(B�u(l))T · sin(BT θ (0))

= K

N

∑
j>i

(
u

(l)
i − u

(l)
j

)
sin

(
θ

(0)
i − θ

(0)
j

)
. (20)

Injecting this last identity into Eq. (16) gives for the fully
locked state

dr

dK
= − 1

rK2N

∑
l�2

1

λl

(∑
k

u
(l)
k ωk

)2

� 0, (21)

since r � 0 and λl < 0 for l � 2 in the stable fully locked state.
The order parameter is therefore a monotonously increasing
function of K .

IV. MONOTONICITY OF THE LYAPUNOV EXPONENTS

Next, given the stable fully locked state {θ (0)
i }, we compute

the variation of its Lyapunov exponents as a function of the
coupling strength K . Because M is real and symmetric, we
can apply the Hellmann-Feynmann theorem [20] to calculate
dλq/dK . We obtain

dλq

dK
= u(q)� d M

dK
u(q). (22)

We express the derivative of the stability matrix with respect
to K as d M/dK = M/K + M̄, which injected back into
Eq. (22) yields

dλq

dK
= λq

K
+ u(q)� M̄u(q). (23)

The matrix M̄ is defined by

M̄ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−K

N
sin

(
θ

(0)
j − θ

(0)
i

) d

dK

(
θ

(0)
j − θ

(0)
i

)
, i �= j,

K

N

∑
l �=i

sin
(
θ

(0)
l − θ

(0)
i

) d

dK

(
θ

(0)
j − θ

(0)
i

)
, i = j.

(24)

Next we show that for the linearly stable fully locked
state, dλq/dK � 0 for all values of q, i.e., the Lyapunov
exponents are monotonically decreasing functions of the
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coupling strength. If the stationary solution considered is
linearly stable (i.e., λi � 0,∀i), the first term in the right-hand
side of Eq. (23) is negative and only the sign of the second
term needs to be determined. We note that M̄ shares the same
zero row sum property as M, thus u(1)� M̄u(1) = 0 and one
readily obtains that dλ1/dK = 0 as should be.

Using Eqs. (4) and (8), and expanding sin (θ (0)
j − θ

(0)
i ) =

sin θ
(0)
j cos θ

(0)
i − cos θ

(0)
j sin θ

(0)
i we obtain

sin
(
θ

(0)
j − θ

(0)
i

) =

√
(Kr)2 − ω2

i

√
(Kr)2 − ω2

j

(Kr)2

×
⎛
⎝ ωj√

(Kr)2 − ω2
j

− ωi√
(Kr)2 − ω2

i

⎞
⎠,

(25)

as well as

d

dK

(
θ

(0)
j − θ

(0)
i

) = d

dK

[
arcsin

(
ωj

Kr

)
− arcsin

(
ωi

Kr

)]

= − 1

Kr

(
r + K

dr

dK

)

×
⎛
⎝ ωj√

(Kr)2 − ω2
j

− ωi√
(Kr)2 − ω2

i

⎞
⎠.

(26)

Hence, the product,

−K

N
sin

(
θ

(0)
j − θ

(0)
i

) d

dK

(
θ

(0)
j − θ

(0)
i

)

= K

N

√
(Kr)2 − ω2

i

√
(Kr)2 − ω2

j

(Kr)3

(
r + K

dr

dK

)

×
⎛
⎝ ωj√

(Kr)2 − ω2
j

− ωi√
(Kr)2 − ω2

i

⎞
⎠

2

, (27)

is positive, since dr/dK � 0 as shown in Sec. III. This result
implies that for the Kuramoto model on the complete graph,
increasing the coupling strength systematically reduces the
difference |θ (0)

i − θ
(0)
j | for all pairs of oscillators i and j .

Putting all this together, M̄ is a zero row sum matrix and
Eq. (27) proves that all its off diagonal entries are positive.
Thus, invoking Gershgorin’s circle theorem [21], we conclude
that M̄ is negative semidefinite and thus u(q)� M̄u(q) � 0.
This concludes the proof that the Lyapunov exponents of the
fully locked solution of the Kuramoto model are decreasing
functions of the coupling, i.e.,

dλ1

dK
= 0,

dλq

dK
< 0, 2 � q � N. (28)

This result implies that if the fully locked state is stable at
K0 ∈ [0, + ∞), then this solution remains linearly stable and
thus can be continuously followed in the interval K0 � K �
+∞. In other words, starting from a stable configuration,
dλq/dK � 0 for all q ensures that no instability occurs as the

coupling increases (i.e., that none of the Lyapunov exponents,
except λ1, vanishes). Equation (28) not only implies that the
stable fully locked state remains stable as the coupling strength
is increased, but also that it becomes “more” stable, in the
sense that more negative Lyapunov exponents correspond to
shorter timescales to return to equilibrium. We note that the
monotonicity of the Lyapunov exponents with the coupling can
also be derived starting from the properties of the spectrum of
the fully locked state presented in Ref. [12].

V. SCALING BEHAVIOR OF THE ORDER PARAMETER

It is known that for uniformly distributed oscillator fre-
quencies, the transition between the incoherent and the fully
synchronized state is of first order [15]. For finite N , this
transition occurs as the coupling is increased above KN

L and is
characterized by a discontinuous jump in the order parameter
from 0 to rN

L . The values of rN
L and KN

L depend explicitly on
the number of oscillators and can be calculated for specific
distributions of natural frequencies [16].

The investigation of fully locked states in the infinite-N
version of the Kuramoto model with frequency distributions
supported on a bounded interval dates back to Ermentrout
[22] who showed that for uniform frequency distributions
the locking threshold and the order parameter at the locking
transition are given by K∞

L = 4/π and r∞
L = π/4. More

recently, Pazó [15] showed that for the infinite-N Kuramoto
model and a uniform box distribution of natural frequencies,
[−1,1] the order parameter above the locking threshold scales
like

r − r∞
L =

(
9π7

217

)1/3

(K − KL)2/3 + O(K − KL). (29)

We next show analytically that for the finite size Kuramoto
model and uniform frequency distribution, the scaling of the
order parameter instead goes like (r − rN

L ) ∼ (K − KN
L )1/2.

Furthermore, we find numerically that the range of validity of
this behavior decreases with N .

We start off from Eq. (23) for dλq/dK , and express the

average u(q)�M̄u(q) using Eq. (15). We obtain

dλq

dK
= λq

K
+

∑
l�2

C
(q)
l (K)

λl

(30)

with

C
(q)
l = 1

N

∑
j>i

sin
(
θ

(0)
j − θ

(0)
i

)(
u

(l)
j − u

(l)
i

)(
u

(q)
j − u

(q)
i

)2

×
∑

k

u
(l)
k ωk. (31)

In Sec. IV, we showed that the Lyapunov exponents of the
stable fully locked state decrease as the coupling is reduced.
Upon reducing K , the locking threshold KN

L is eventually
reached at which point the locked state becomes unstable
and ceases to exist. This bifurcation is accompanied with
the vanishing of the Lyapunov exponent λ2. Assuming that
C

(2)
2 (K) does not vanish at K = KN

L , sufficiently close to KN
L ,

042207-4



FINITE-SIZE SCALING IN THE KURAMOTO MODEL PHYSICAL REVIEW E 95, 042207 (2017)

we can approximate Eq. (30) for q = 2 by

dλ2

dK
≈ C

(2)
2

(
KN

L

)
λ2

. (32)

Solving Eq. (32) yields

λ2 ≈ −
√

2C
(2)
2

(
KN

L

)√
K − KN

L . (33)

This result indicates that the largest nonzero Lyapunov
exponent approaches zero with a square root behavior in
the vicinity of the bifurcation. For symmetrically distributed
natural frequencies ωi , it follows from Eq. (8) in Ref. [12],
together with Eq. (25) that C(2)

2 (KN
L ) is finite. Numerical results

to be presented below for that case corroborate Eq. (33).
Equation (30) also captures the asymptotic behavior of

the Lyapunov exponents in the limit K → +∞. Since the
Lyapunov exponents are decreasing functions of the coupling,
at large values of K we have 1/λl 
 1 for all l � 2. Neglecting
the second term in the right-hand side of Eq. (30) yields

λq ≈ −K q = 2, . . . ,N, (34)

as expected. Since |θ (0)
i − θ

(0)
j | decreases with K for all i,j ,

when K → +∞ the value of all cosines entering the definition
of the stability matrix Eq. (5) approaches 1 in which case
its eigenvalues are −K with multiplicity N − 1, and 0 with
multiplicity 1.

We next turn our attention to the order parameter close
but above locking. When the coupling approaches the locking
threshold, λ2 → 0. This justifies to truncate the sum in
Eq. (21), keeping only the dominant term l = 2:

dr

dK
≈ − 1

rK2N

1

λ2

(∑
k

u
(2)
k ωk

)2

. (35)

Using the scaling behavior of λ2 derived above, Eq. (33), we
obtain the leading expression for dr/dK by replacing K and
r respectively by KL and rN

L in the right-hand side of Eq. (35).
Solving the resulting ordinary differential equation we obtain

r − rN
L ≈ 1

rN
L

(
KN

L

)2
N

2
( ∑

k u
(2)
k ωk

)2√
2C

(2)
2

(
KN

L

)
√

K − KN
L . (36)

To check our main results, Eqs. (33) and (36), we nu-
merically simulate Kuramoto models with box distributed
natural frequencies and various N . We follow Refs. [15,16] and
take natural frequencies evenly spaced in the interval [−1,1]
according either to the midpoint

ωi = −1 + 2i − 1

N
i = 1, . . . ,N, (37)

or the end-point rule

ωi = −1 + 2
i − 1

N − 1
i = 1, . . . ,N, (38)

because they allow to obtain leading-order estimates for KN
L

and rN
L , Eqs. (39) and (40) below. Few results we obtained

with randomly but homogeneously distributed ωi ∈ [−1,1]
corroborate the results to be presented. Figures 1 and 2 show
numerical results for N = 100 and N = 5000 oscillators.
The data confirm the scaling predictions of Eqs. (33) and

10−4

10−3

10−2

10−1

100

101

−
λ

2

(a) (b)

10−8 10−6 10−4 10−2 100

K − KL

10−6

10−5

10−4

10−3

10−2

10−1

100

r
−

r L

(c)

1/3

(K − K∞
L )2/3

N → ∞

10−8 10−6 10−4 10−2 100

K − KL

(d)

1/3

(K − K∞
L )2/3

N → ∞

FIG. 1. Fourth order Runge-Kutta simulation results of the finite
size Kuramoto model. Oscillator frequencies are distributed over the
interval [−1,1] according to the midpoint rule, Eq. (37), and N = 100
[(a) and (c)] and 5000 [(b) and (d)]. The locking threshold KN

L is
determined numerically with an accuracy of 10−9. The Runge-Kutta
integration step is 0.005 and the maximal number of iterations is
5 × 107. (a) and (b) show the square root behavior of λ2 as a function
of K − KN

L . The red lines give our theoretical prediction, Eq. (33),
with no fitting parameter, the prefactor of Eq. (33) being computed
numerically for the best estimate of the locking threshold obtained.
The blue lines give the large K asymptotics λ2 = −K . (c) and (d)
show the square root behavior of r − rL as a function of K − KN

L .
The red lines give our theoretical prediction, Eq. (36), with no fitting
parameter, the prefactor of Eq. (36) being computed numerically
for the best estimate of the locking threshold obtained. The plots
also present the infinite-N limit results for r − rL as a function of the
distance K − K∞

L obtained by solving numerically the self consistent
equation for the order parameter (crosses), as well as the 2/3 scaling
exponent prediction of Ref. [15] (green line).

10−4

10−3

10−2

10−1

100

101

−
λ

2

(a) (b)

10−8 10−6 10−4 10−2 100

K − KL

10−6

10−5

10−4

10−3

10−2

10−1

100

r
−

r L

(c)

1/3

(K − K∞
L )2/3

N → ∞

10−8 10−6 10−4 10−2 100

K − KL

(d)

1/3

(K − K∞
L )2/3

N → ∞

FIG. 2. Same as in Fig. 1 but for oscillator frequencies distributed
according to the end-point rule, Eq. (38).
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10−8 10−6 10−4 10−2 100

K − KL

10−5

10−4

10−3

10−2

10−1

100

r
−

r L

(a) Mid-point

N → ∞
N =10

N =100

N =1000

N =10000

10−8 10−6 10−4 10−2 100

K − KL

(b) End-point

N → ∞
N =10

N =100

N =1000

N =10000

FIG. 3. Behavior of r − rL as a function of K − KN
L for different

N . The coupling range above the locking threshold for which r −
rL ∼ (K − KN

L )1/2 decreases with the oscillator number. The dashed
line indicating a

√
K − KL behavior is a guide to the eye.

(36) sufficiently close to KN
L . Thus, we report a discrepancy

between the scaling of r − rL ∼ (K − K∞
L )2/3 in the ther-

modynamic limit and our finite size scaling which goes like
r − rL ∼ (K − KN

L )1/2. Some distance away from KL, one
seems to recover the N → ∞ behavior ∼ (K − K∞

L )2/3, as is
evident for N = 5000.

The above reasoning predicts that the square root behavior
is valid for K sufficiently close to KL, but how close? This
is investigated in Figs. 3 and 4 which show that the coupling
range inside which the finite size scaling holds decreases with
N . The apparent discrepancy between Pazó’s [15] and our
results is therefore the trademark of a crossover from finite N

to N → ∞. Figure 4 gives the coupling range over which
the numerical data obtained for r − rL deviates from our
theoretical prediction, Eq. (36), by more than 5% or 10%,
as a function of the inverse of the oscillator number. The
observed behavior suggests that the coupling range δK inside

10−7

10−6

10−5

10−4

10−3

δK

(a) Mid-Point

5%

10%

0.07N−1.42

0.72N−1.6

10−4 10−3 10−2

1/N

10−7

10−6

10−5

10−4

10−3

δK

(b) End-Point

5%

10%

0.08N−1.44

0.83N−1.61

FIG. 4. Range δK over which r − rL deviates from our theoret-
ical prediction Eq. (36) by less than 5% or 10% as a function of the
number of oscillators. Solid lines are best power-law fits.

which r − rL ∼ (K − KL)1/2 decreases with N as δK ∼ N−α

with α ≈ 1.5 for both midpoint and end-point frequency
distributions.

While we are not able to derive analytically the value of the
exponent α ≈ 1.5, we can pinpoint the origin of the crossover
from r − rL ∼ (K − KN

L )1/2 to r − rL ∼ (K − K∞
L )2/3 as

N → ∞. In our treatment above we neglected terms with
l � 3 in the sum over l in Eq. (30). This is an increasingly bad
approximation as the number of oscillators tends to infinity,
because then λ3(KN

L ) → 0 as N → ∞. To show this, we recall
the finite size asymptotics recently derived in Refs. [15,16] for
the mid-point and end-point frequency distributions, Eqs. (37)
and (38). In Ref. [16] Ottino-Löffler and Strogatz obtained the
finite-N corrections (including numerical prefactors) of the
locking thresholds

KN
L =

{
4
π

− 64ξ

π2 N−3/2 + O(N−2) midpoint,

4
π

+ 4
π
N−1 − 64ξ

π2 N−3/2 + O(N−2) end-point,

(39)

where ξ ≈ 0.093366 is the Hurwitz ζ function evalu-
ated at ζ (−1/2,C1/2), and C1 ≈ 0.605444 is defined by
ζ (1/2,C1/2) = 0 with 0 � C1 � 1 [23,24]. One obtains the
leading finite size corrections to the order parameter as

rN
L ≈ π

4
+ π

4
(C1 − 1)N−1 + O(N−3/2). (40)

Despite the different scalings for the locking threshold, the
asymptotic scaling of the order parameter, Eq. (40), is the
same for both frequency distributions.

Mirollo and Strogatz [12] further showed that the spectrum
of the locked state for the finite size Kuramoto model is
composed of a discrete part consisting of the eigenvalues
λ1 = 0 and −

√
(Kr)2 − ω2 � λ2 � 0 and of a continuous

part containing the remaining N − 2 eigenvalues −Kr �
λN � . . . � λ3 � −

√
(Kr)2 − ω2 where ω ≡ maxi |ωi |. An

additional result of Ref. [12] is that for symmetric frequency
distributions (as is the case for the midpoint and end-point
rules) the Lyapunov exponents λ3 and λ4 can be located even
more sharply as

−
√

(Kr)2 − ω2
2nd � λ4 � λ3 � −

√
(Kr)2 − ω2 (41)

with ω2nd the second largest frequency.
At the locking threshold, KN

L and rN
L , the fully locked

state is marginally stable λ2 = 0 and expanding the bounds
of Eq. (41) in powers of N using Eqs. (39) and (40) gives the
scaling of the gap which separates the continuous part of the
spectrum from zero. Using ω = 1 − 1/N , ω2nd = 1 − 3/N

and ω = 1, ω2nd = 1 − 2/N − 1, respectively, for midpoint
and end-point rules we obtain

−
√

2C1 + 4√
N

� λ4 � λ3 � −
√

2C1√
N

, (42)

for both choices. Figure 5 confirms numerically the scalings
of λ3 and λ4 at KL.

Equation (42) then shows that at the locking threshold,
λ3,4 ∼ N−1/2. This implies that the larger the number of
oscillators, the closer to zero the continuous part of the
spectrum will be. Thus neglecting terms with l � 3 in the
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10−2

10−1

100

−
λ

3,
−

λ
4

(a) Mid-point

√
2C1N

−1/2

√
2C1 + 4N−1/2

−λ3

−λ4

10−4 10−3 10−2 10−1

1/N

10−2

10−1

100

−
λ

3,
−

λ
4

(b) End-point

√
2C1N

−1/2

√
2C1 + 4N−1/2

−λ3

−λ4

FIG. 5. Second and third largest nonvanishing Lyapunov expo-
nents at the locking threshold, for midpoint and end-point frequency
distributions [(a) and (b), respectively]. The solid and dashed lines
give the interval defined by Eq. (42).

sums in Eqs. (21) and (30) is an increasingly unjustified
approximation as N increases. The exponent 1/2 in the
behaviors of λ2 and r − rL relies on this truncation, which is
justified only in an interval |K − KL| < δK which is shrinking
with N . To recover the 2/3 exponent obtained by Pazó in the
continuous limit would require a resummation of all terms in
Eqs. (21) and (30) as N tends to infinity, which we have not
been able to do.

VI. CONCLUSION

We investigated the scaling properties of the Kuramoto
model with uniformly distributed natural frequencies close to
the synchronization threshold at finite but growing number N

of oscillators. We found a nontrivial behavior in that both the
largest nonzero Lyapunov exponent λ2, and the order param-
eter r of the fully locked state scale like λ2 ∼ (K − KN

L )1/2

and r − rN
L ∼ (K − KN

L )1/2, above the locking threshold KN
L .

Our results differ from the prediction r − r∞
L ∼ (K − K∞

L )2/3

of Pazó [15] for infinitely many oscillators. We showed that
this apparent disagreement is the trademark of a crossover
form finite N to N → ∞. The range of validity δK of our
result λ2,r − rL ∼ (K − KN

L )1/2 shrinks with N . We found
numerically δK ∼ N−α , with α ≈ 1.5. Although the numerics
presented in this work are for evenly spaced frequencies, our
results remain valid for other choices of ωi’s compatible with a
uniform distribution. Our scaling predictions for λ2 and r − rL

do not depend on this choice and we checked numerically on
few examples that they remain valid for frequencies drawn
randomly from a uniform distribution.

The fully locked states of the Kuramoto model have been
thoroughly investigated in the limit of infinitely many oscilla-
tors. For the special case of uniform frequency distributions,
long-established analytical results are known for: i) the value
K∞

L of the locking threshold, ii) the value r∞
L of the order

parameter at phase locking, and iii) the scaling behavior of the
order parameter r above KL. For finite N , however, much less
is known. Finite size corrections to the locking threshold and to
the order parameter for frequencies uniformly distributed over
the interval [−1,1] have been calculated only recently [16].
The motivation behind the present work is to investigate further
the finite N behavior of the Kuramoto close to the locking
threshold. Our paper complements Ref. [16] by investigating
the scalings of the largest Lyapunov exponent and of the
order parameter above KL. The observed crossover from finite
to infinite N and shrinking range of validity of our results
significantly clarifies the mechanism behind the convergence
to the limit N → ∞ of the Kuramoto model.
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