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Determining the number of stable phase-locked solutions for locally coupled Ku-
ramoto models is a long-standing mathematical problem with important implications
in biology, condensed matter physics, and electrical engineering among others. We
investigate Kuramoto models on networks with various topologies and show that
different phase-locked solutions are related to one another by loop currents. The
latter take only discrete values, as they are characterized by topological winding
numbers. This result is generically valid for any network and also applies beyond
the Kuramoto model, as long as the coupling between oscillators is antisymmetric in
the oscillators’ coordinates. Motivated by these results, we further investigate loop
currents in Kuramoto-like models. We consider loop currents in nonoriented n-node
cycle networks with nearest-neighbor coupling. Amplifying on earlier works, we
give an algebraic upper bound N ≤ 2 Int[n/4] + 1 for the number N of different,
linearly stable phase-locked solutions. We show that the number of different stable
solutions monotonically decreases as the coupling strength is decreased. Further-
more stable solutions with a single angle difference exceeding π/2 emerge as the
coupling constant K is reduced, as smooth continuations of solutions with all angle
differences smaller than π/2 at higher K . In a cycle network with nearest-neighbor
coupling, we further show that phase-locked solutions with two or more angle
differences larger than π/2 are all linearly unstable. We point out similarities be-
tween loop currents and vortices in superfluids and superconductors as well as
persistent currents in superconducting rings and two-dimensional Josephson junction
arrays. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4943296]

I. INTRODUCTION

From large colonies of fireflies flashing in unison to single-frequency electric power grids
covering areas as large as entire continents, from human brain waves to arrays of submicronic
Josephson junctions, there are many disparate systems that exhibit collective synchrony.1 Following
early works, most notably by Winfree,2 a window towards a quantitative, mathematical understand-
ing of collective synchrony was opened by Kuramoto3 who proposed a model of coupled oscillators
defined by the following set of nonlinear differential equations:

θ̇i = Pi −
n
j=1

Ki j sin(θi − θ j), i = 1, . . . ,n. (1.1)

The model describes the dynamics of a set of n one-dimensional oscillators with angular coordi-
nates θi and natural frequencies Pi under the influence of a coupling that is periodic in their angle
differences. The Kuramoto model has become a standard model for investigating the transition to
synchrony in coupled dynamical systems.4–6

The beauty of the Kuramoto model is that it is sufficiently simple to allow for analytical treatments
of the emergence of synchrony in coupled oscillators systems, while retaining most of the essence
of this complex problem. As a matter of fact, Kuramoto observed early on that for constant all-to-all
coupling, Ki j ≡ K/n, an analytically solvable mean-field solution becomes exact in the large n limit.
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A coherent, synchronous state {θ(0)i } emerges for K > Kc in the form of a solution to Eq. (1.1) with
θ̇
(0)
i − θ̇

(0)
j = 0, for at least a finite fraction of pairs of oscillators (i, j). The critical coupling strength

Kc depends on the distribution g(P) of natural frequencies Pi, and phase-locking with θ̇(0)i − θ̇
(0)
j = 0,

for all i, j, can be achieved if g(P) has compact support.7,8

Most physical systems exhibiting synchrony consist however in collections of subsystems with
short-range coupling. The problem becomes much more complicated for Kuramoto models defined
on such complex networks with reduced node degree because the mean-field approach no longer
applies. Phase-locked solutions {θ(0)i } to Eq. (1.1) are determined by

Pi =

n
j=1

Ki j sin(θ(0)i − θ
(0)
j ), (1.2)

i.e., by a set of n nonlinear algebraic equations which, in principle, accept more than one solution.
For instance, new solutions to Eq. (1.2) can be obtained from known solutions by substituting
θ
(0)
i − θ

(0)
j → π − (θ(0)i − θ

(0)
j ) for some or all (i, j). This can lead, in principle, to an exponential

number ∝ 2n of solutions; however, many of them are not dynamically stable in the sense given by
Eq. (1.1). It has, in particular, been shown that there is a single stable solution above the transition to
synchrony for all-to-all couplings9,10 and for identical oscillators (Pi = P̄, for all i) on networks with
sufficiently large node degree.11

To be physically relevant, a solution of Eq. (1.2) needs to be robust against any small pertur-
bation. Thus, the truly important question is “how many linearly stable phase-locked solutions
to the Kuramoto problem are there?” This question dates back at least to the work of Korsak12

in the context of the power flow problem (dealing, in particular, with conditions for operational
synchrony in the electric power grid),13 which is closely related to the Kuramoto model. As a
matter of fact, it turns out (see Section II A) that for high voltages, a first approximation is to
neglect ohmic losses, in which case AC electric power transport between the nodes of a power
grid is governed by Eq. (1.2), with Pi being the power injected (Pi > 0) or extracted (Pi < 0) at
node i. Korsak provided a simple example of a network where different, linearly stable solutions
exist that differ by some circulating loop current. Similar works have dealt with that problem since
then, motivated by issues of voltage and phase stability that are central to the stable, synchronous
operation of electric power grids. Most, if not all, of these investigations are however restricted to
numerical investigations on small networks. The literature on the subject is rather large and we refer
the interested reader to Refs. 14 and 15 for more information. Bounds for the number of different
stable solutions were first constructed in the spirit of the argument given after Eq. (1.2). In this
way, Refs. 16 and 17 gave an exponential upper bound for the number of power flow solutions, as
did Ref. 18 for the phase-locked solutions of the Kuramoto model. Ref. 18 observed numerically,
however, that the number of stable solutions is much smaller than 2n. Below we show that a much
better, algebraic upper bound is obtained when considering that quantized loop currents differentiate
between different stable solutions.

To the best of our knowledge, the characterization of loop flows with topological winding num-
bers has been first made by Janssens and Kamagate,19 though Lüders (in a referee discussion at the
end of Ref. 12) and Ermentrout7 already point to it. Topological winding numbers emerge from the
consistency requirement that summing angle differences along any cycle in a network must give an
integer multiple of 2π. Below we illustrate how this leads to loop currents that can take only discrete
values. Similar considerations in a different physical context lead to the quantization of circulation
around vortices in a superfluid20,21 or a type-II superconductor22 and to the quantization of persistent
currents in superconducting rings23,24 and rings of Josephson junctions.25 That such a similarity
exists is not a surprise, given that each term on the right-hand-side of Eq. (1.2) gives the Josephson
current between two superconductors with order parameter ψi, j = n1/2

s exp iθ(0)i, j coupled by a tunnel
junction of transparency Ti j = ~Ki j/8ens. More surprising, however, is that investigations on small
cycle networks with injections and consumptions show that loop currents persist even in networks
with ohmic dissipation.12,26
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Using winding numbers, Rogge and Aeyels27 obtained an algebraic upper bound
N ≤ 2 Int[n/4] + 1 for the number of stable solutions with any angle difference in a Kuramoto
model on an n-node ring with unidirectional nearest-neighbor couplings. The same upper bound has
been calculated by Ochab and Góra28 in a nonoriented n-node Kuramoto ring with nearest-neighbor
coupling, under the condition that all angle differences are smaller than π/2. This upper bound is
reached when the coupling strength goes to infinity, equivalently corresponding to Pi = 0, for all i in
Eqs. (1.1) and (1.2), i.e., to identical oscillators. This alternatively gives the number of stable states
for Josephson junction rings in the classical regime, neglecting Coulomb interaction effects.24,25

Different solutions for the Kuramoto model were investigated semi-analytically in Ref. 29 and
classified according to two integers, q (the winding number mentioned above) and l (the number
of angle differences larger than π/2) in Ref. 30. In a somewhat different but related direction of
investigation, Wiley et al.31 investigated the size of the basin of attraction for synchronous solutions
with different q in a cycle network of identical oscillators and found that it gets smaller at higher q.

Below we show that two different solutions to Eq. (1.2) on any network differ only by loop cur-
rents. This provides additional motivation for investigating loop currents as it rigorously connects
them to multiple stable solutions to Eq. (1.2). We thus investigate single-loop networks and show
that the algebraic upper bound of Rogge and Aeyels27 and Ochab and Góra28 is generically valid
for the Kuramoto model on a nonoriented cycle with nearest-neighbor interactions. We furthermore
demonstrate that, for such networks, at most one angle difference can exceed π/2. Stable solutions
are, in particular, restricted to only l = 0 or l = 1 in the classification scheme of Ref. 30. We show
that the number of stable solutions decreases monotonically as the coupling strength is reduced, and
that solutions with l = 1 emerge continuously at lower coupling from solutions with l = 0.

The manuscript is organized as follows: Section II states the initial concepts and defines the
model considered. Loop flows and their link with multiple solutions to the power flow equations are
discussed in Section III. Section IV gives a complete study of the multiple stable solutions to the
power flow equations on a cycle network. Conclusions are given in Section V.

II. DEFINITIONS AND FUNDAMENTAL CONCEPTS

We are interested in a class of problems represented by at least three important physical sys-
tems. We have already defined the Kuramoto model in Eq. (1.1), for which more details can be
found in review articles.4–6 We have briefly mentioned vortices in superfluids and superconductors,
as well as Josephson junction arrays, where circulating supercurrents are given by laws similar to
Eq. (1.2) and for which a rather vast literature, including review articles, also exists.32–34 These
problems are well documented in the physics literature and we therefore do not discuss them further.
Electric power grids are less known in physics and we start with a brief introduction to this third
class of problems, emphasizing its connection with the Kuramoto model of Eq. (1.1).

A. Power flow and swing equations

Power grids are AC electric networks. They can be modeled as graphs with n nodes where
each node i = 1, . . . ,n injects (consumes) a power Pi > 0 (Pi < 0). The edges of the graph represent
electrical lines with a complex admittance Y = G + iB. Power grids span different voltage levels
separated by transformers which, to a good approximation, conserve power but neither current
nor voltage. Additionally, the control variables are the injected and consumed powers; therefore,
the equations governing the behavior of the system are expressed in terms of electric powers and
not currents. Considering a generating power plant, the balance between the source (mechanical,
thermal, chemical, or nuclear) power, the transmitted (electric) power, and the losses leads to the
swing equations13

θ̇i = Pi −
n
j=1

|Vi | |Vj | �Gi j cos(θi − θ j) + Bi j sin(θi − θ j)� , i = 1, . . . n, (2.1)
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where θi is the angle between the currents Ii = |Ii | exp(iωt) and the voltages Vi = |Vi | exp(iωt + iθi)
(in a frame rotating with the frequency ω/2π = 50 or 60 Hz of the grid), θi − θ j is taken in

�
− π,π

�
,

and G and B are the conductance and susceptance matrices, respectively.13 In Eq. (2.1), we already
consider a simplified version of the swing equations, where we neglected the inertia of the (rotating)
generators. We did that since our main interest is to determine whether a solution is stable or not,
which is not influenced by the presence of an inertia term (note that the inertia influences stability
time scales13). In most of our discussion, we make a second approximation and consider networks
of purely susceptive lines with Gi j = 0. This is a leading order approximation in the small parameter
Gi j/Bi j < 0.1 valid for very high voltage networks. With this approximation, lines have no ohmic
losses and all nodes are at the same voltage. For the sake of simplicity, we will also consider lines
with identical capacities and set K B |Vi ||Vj |Bi j, on all edges ⟨i j⟩. With all these approximations,
Eq. (2.1) leads to an equation similar to Eq. (1.1),

θ̇i = Pi − K

j∼i

sin(θi − θ j), i = 1, . . . ,n, (2.2)

where the sum is taken over nodes j connected to node i ( j ∼ i) and phase-locked solutions are
governed by the power flow equations, which reduce to the form of Eq. (1.2),

Pi = K

j∼i

sin(θi − θ j), i = 1, . . . ,n. (2.3)

Electric power grids are balanced in steady-state, meaning that power injections exactly compensate
power consumptions, i.e., 

i

Pi = 0.

Additionally, injected and consumed powers are confined to a compact support, Pi ∈ [Pmin,Pmax]
which is necessary for the existence of phase-locked synchronous solutions.7,8

We note finally that the quantity Pi j B K sin(θi − θ j) represents the power flow along line ⟨i j⟩,
from site i to site j, so that Eq. (2.3) can be rewritten as

Pi =

j∼i

Pi j, (2.4)

which is Kirchhoff’s currents law. Below we often use the power flow terminology and, in partic-
ular, we discuss loop flows to describe circulating flows around closed cycles that do not distribute
power to consuming nodes. Eq. (2.3) only depends on angle differences; thus, any solution is
defined up to a homogeneous displacement of all angles. This gauge invariance allows to arbitrarily
define a reference node whose angle is set to zero. All other angles are then determined with respect
to that reference angle.

B. Stability

The swing equations, Eq. (2.2), govern the system’s dynamics and allow to determine the linear
stability of solutions of Eq. (2.3). Under small perturbations about such a phase-locked solution,
θ
(0)
i → θ

(0)
i + δθi, the linearized dynamics reads

δθ̇i = −

j∼i

K cos(θ(0)i − θ
(0)
j )(δθi − δθ j), i = 1, . . . ,n. (2.5)

The linear stability of the solution {θ(0)i } is therefore determined by the spectrum of the stability
matrix M({θ(0)i }),

Mi j B




K cos(θ(0)i − θ
(0)
j ), if i , j,

−

k∼i

K cos(θ(0)i − θ
(0)
k
), if i = j, (2.6)
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which depends on the angles at the phase-locked solution. The eigenvalues of M({θ(0)i }) are called
Lyapunov exponents. Because


j Mj i =


j Mi j = 0, for all i, the constant vector is an eigenvector

of M with eigenvalue λ1 = 0. This follows from the above-mentioned gauge invariance, where
only angle differences between oscillators matter. Furthermore, as M is real symmetric, all its
eigenvalues are real. Thus the synchronous state is stable if M({θ(0)i }) is negative semidefinite and
unstable otherwise. In other words, the synchronous solution remains stable as long as the largest
nonvanishing eigenvalue λ2 of M({θ(0)i }) remains negative.

To the best of our knowledge, it was first mentioned in Ref. 35 that as long as all angle differ-
ences are in

�
−π/2, π/2

�
, Gershgorin’s circle theorem36 guarantees that M is negative semi-definite.

Then all Lyapunov exponents are non-positive, which implies that any solution of Eq. (2.3) with
θ
(0)
i − θ

(0)
j ∈

�
−π/2, π/2

�
on each of the graph’s edges is linearly stable. The same theorem allows to

conclude that if |θ(0)i − θ
(0)
j | > π/2 on all edges, the solution is linearly unstable. Recent works have

investigated solutions with a single angle difference larger than π/2 in a Kuramoto model on a cycle
network.29,30 However, little is known analytically if some of the angle differences are smaller and
some are larger than π/2, except on cycle networks with unidirectional nearest-neighbor coupling.27

Below we fill this gap and show that at most one angle difference is bigger than π/2 and that a stable
solution with one angle difference exceeding π/2 comes from a solution at larger K with all angle
differences smaller than π/2.

III. LOOP FLOWS AND WINDING NUMBER

In this section, we show that different solutions of Eq. (2.3) for any network differ only by
circulating loop flows. This rigorous result, which appeared in slightly different form in Ref. 37,
sheds light on the common wisdom that Eq. (2.3) may have multiple stable solutions for networks
with closed cycles.12,19,27,31 Before we discuss this theorem, we recall some definitions from graph
theory which we will use.

Definition 3.1. A graph G = (VG,EG) is a set of vertices VG with a set of edges EG, each of
which is a pair of connected vertices. If i, j ∈ VG, the edge connecting i to j is ⟨i j⟩ ∈ EG.

Definition 3.2. A path from vertex i to vertex j in a graph G is a sequence S ⊂ EG of edges

S = {⟨ii1⟩,⟨i1i2⟩, . . . ,⟨iℓ j⟩}.

Definition 3.3. A graph is connected if for any two vertices i, j ∈ VG there exists a path from i
to j.

Definition 3.4. A cycle in a graph is a path from a vertex i to itself going at most once through
any edge.

Definition 3.5. A tree is a connected graph with no cycle. Given a graph G = (VG,EG), a
spanning tree T of G is a tree such thatVT = VG and ET ⊂ EG.

Remarks. (i) It can be shown inductively that a tree with n vertices has exactly n − 1 edges.
(ii) On a tree-network, there is a unique flow distribution satisfying Kirchhoff’s current law.

In what follows, we use the terms network and grid to denote physical objects, whose mathe-
matical representations will be referred to as graphs. Additionally, we introduce the concept of loop
flows, which are constant power flows circulating clockwise or anticlockwise around a cycle in a
network. Strictly speaking, loop flows can be univocally defined only when power is neither injected
nor consumed in the network. With finite power injections and consumptions, loop flows can be
defined only relatively, as flow differences from a reference solution, in the spirit of the upcoming
theorem.
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Let G be a graph and OG an arbitrary orientation of this graph, which means that we define
positive and negative directions for every edge of G in the following way. For each edge ⟨i j⟩, we call
the vertex i the source of the edge and j its target. Consider the real vector space I ≃ Rm of flows
on the m edges of a graph G. The components {Iℓ} of a flow vector I ∈ I describe the intensity of
the flow on the ℓth edge of G, with Iℓ > 0 if the direction of the flow agrees with the orientation of
this edge given by OG, and Iℓ < 0 otherwise. The canonical basis of I is the set of flow vectors Jℓ,
ℓ = 1, . . . ,m, with unit flow on edge ℓ and zero flow on all other edges. Given a vector of power
injections and consumptions at every node,

P= (P1, . . . ,Pn) ∈ (1, . . . ,1)⊥ ⊂ Rn,

a flow vector I ∈ I satisfies Kirchhoff’s current law Pi =


j∼i Pi j if

Pi =

ℓ

AiℓIℓ i = 1, . . . ,n, (3.1)

where we introduced the incidence matrix A of G,

Aiℓ B




1, if node i is the source of edge ℓ,
−1, if node i is the target of edge ℓ,
0, otherwise.

We are now ready to formulate and prove our theorem.

Theorem 3.6. Let G = (VG,EG) be a connected graph with |VG| = n sites and |EG| = m
edges. Let P ∈ (1, . . . ,1)⊥ be a vector of power injections and consumptions at each node. Then two
distributions of flows on G represented by flow vectors I′ and I′′ ∈ I satisfying Kirchhoff’s currents
law, Eq. (2.4), differ by a combination of loop flows on the different cycles of G.

Remark. In particular, Theorem 3.6 implies that the flow distributions of two different solutions
of Eq. (2.3) differ by a collection of loop flows. This result already appeared in slightly different
form in the supplemenatry material of Ref. 37.

Proof. If m = n − 1, then G is a tree and the flows on the lines are uniquely determined, which
agrees with the statement because G has no cycle. Therefore, from now on, we assume m ≥ n. Let
T be a spanning tree of G and let us number the edges of T from 1 to n − 1 and the edges of G \ T
from n to m. Let I◦ B I′ − I′′ be the difference between the two flow vectors. Then, for any i, we
have 

ℓ

AiℓI
◦
ℓ =


ℓ

Aiℓ(I ′ℓ − I ′′ℓ ) = Pi − Pi = 0,

from which we conclude that I◦ is a solution of Eq. (3.1) with P = 0. What we need to show is
therefore that any solution I of the system of equations

ℓ

AiℓIℓ = 0 , i = 1, . . . ,n, (3.2)

is a combination of loop flows. To do this we write Eq. (3.2) in matricial form,

AI = 0. (3.3)

By definition, the set of solutions of Eq. (3.3) is the kernel of A, which is a subspace of I.
In algebraic graph theory, ker(A) is referred to as the cycle space and it is a standard result38

that any element in ker(A) is a linear combination of unitary flows along the cycles of the network
considered. This completes the proof. �

Remark. Theorem 3.6 is not restricted to the power flow problem. It generically applies to any
system of coupled oscillators with antisymmetric coupling, in particular, to the Kuramoto model on
any network.
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Indexing the nodes along one such cycle, we write Pi, i+1 for the power flow from node i to
node i + 1, with indices taken modulo n. Theorem 3.6 states in particular that multiple solutions to
Eq. (2.3) can appear only when there are closed cycles in the network.

Alternatively, any flow {Pi, i+1} on a cycle can be written as the sum of a reference solution, char-
acterized by its flows {P∗i, i+1}, and a loop flow of intensity Kε, circulating around the cycle (see Fig. 1),

Pi, i+1= P∗i, i+1 + Kε.

We call ε the loop flow parameter. It is only defined with respect to a reference solution, which is
conveniently constructed from the Pi’s as

P∗i, i+1B
i

j=1

Pj, i = 1, . . . ,n.

Note that the reference solution depends on node numbering and any other flow distribution satisfy-
ing Kirchhoff’s power balance can be taken as reference solution.

As angle differences ∆i j B θi − θ j are taken modulo 2π in the interval (−π,π], their sum over
the cycle gives an integer multiple of 2π. This brings us to the definition of the winding number.

Definition 3.7. For a given solution of power flow Eq. (2.3) on the cycle, we define its winding
number as the integer

q B (2π)−1
n
i=1

∆i, i+1 ∈ Z. (3.4)

The winding number characterizes a solution and is related to the loop flow. Unlike the latter,
however, it is uniquely defined. Eq. (3.4) quantizes the loop flow, i.e., it can take only discrete values.

IV. THE NUMBER OF STABLE SOLUTIONS

Theorem 3.6 connects the existence of multiple solutions to Eq. (2.3) to the presence of cy-
cles traveled by quantized loop flows. The number of solutions is thus related to the number of
acceptable, discrete loop flows. In the remainder of this manuscript, we focus on this problem in
single-cycle graphs.

FIG. 1. Cycle network of length n. The nodes inject/consume a power Pi, while a power Pi j is transmitted along the edge
⟨i j⟩. Edges correspond to lines with capacity K (loop flow problem), to couplings of strength K (Kuramoto problem), or to
tunnel barriers of transparency ~K/8ens (Josephson junction problem). A loop flow of intensity Kε is circulating around
the cycle.
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We first treat the case K → ∞, where stable solutions necessarily have all angle differences in
[−π/2, π/2]. We then consider the situation for finite K , where we show that the number of stable
solutions decreases with K that the angle difference along some of the lines can exceed π/2, but that
it can happen on a single line at most.

A. Angle differences and sum of angle differences

A solution is fully characterized by the angle differences along the lines. These can be written
as functions of the loop flow parameter ε,

Pi, i+1 = P∗i, i+1 + Kε = K sin(∆i, i+1) =⇒ ∆i, i+1 = ai(ε), (4.1)

where there are two possible choices for each ai,

ai(ε) =



arcsin
(
ε + P∗i, i+1/K

)
=⇒ ∆i, i+1 ∈ [−π/2, π/2] ,

π − arcsin
(
ε + P∗i, i+1/K

)
=⇒ ∆i, i+1 ∈ (−π,−π/2) ∪ (π/2, π] . (4.2)

Since the power transmitted along any link is bounded by K , we obtain bounds on ε,

−K ≤ Pi, i+1 ≤ K ⇐⇒ −1 − P∗i, i+1/K ≤ ε ≤ 1 − P∗i, i+1/K, i = 1, . . . ,n.

Thus ε ∈
�
εmin, εmax

�
, with

εminB max
1≤i≤n


−1 − P∗i, i+1/K


= −1 − P∗min/K (4.3a)

and

εmaxB min
1≤i≤n


1 − P∗i, i+1/K


= 1 − P∗max/K, (4.3b)

where P∗min B mini P∗i, i+1 and P∗max B maxi P∗i, i+1. Note that as soon as the Pi’s are not all equal to
zero, P∗min , P∗max. We add an appropriate constant to the reference flow to make sure that P∗min , 0
and P∗max , 0,which will facilitate our discussion without restricting its generality.

As seen in Section II B, a solution is stable if all angle differences belong to the interval�
−π/2, π/2

�
. In this situation, we can write the sum of angle differences around the cycle as a

function of the parameter ε,

A0(K, ε)B
n
i=1

∆i, i+1 =

n
i=1

arcsin
(
ε + P∗i, i+1/K

)
. (4.4)

As the arcsine is continuous and increasing, the function A0 is also continuous and increasing with
respect to ε. Thus for fixed K0, the functionA0(K0, ε) defines a one-to-one correspondence between
the intervals

�
εmin(K0), εmax(K0)� ←→

�
A0(K0, εmin(K0)),A0(K0, εmax(K0))�.

The sum of angle differences around the cycle has to be a multiple of 2π, thus defining εq such that
A0(K0, εq) = 2πq and

∆i, i+1= arcsin
(
εq + P∗i, i+1/K0

)
, i = 1, . . . ,N,

giving a stable solution of Eq. (2.3).
Therefore, the number of solutions with |∆i, i+1| < π/2 for all i is straightforwardly given by the

number of q’s such thatA0(K0, εq) = 2πq. Previous works have treated this case;28 however, allow-
ing |∆i, i+1| > π/2 renders the problem much more complicated. It has so far been solved only for
unidirectional coupling.27 Our strategy for incorporating solutions with |∆i, i+1| > π/2 is to first treat
K → ∞, where we show that |∆i, i+1| < π/2, for all i, for stable solutions. The number of solutions
is then easy to compute. Second, we generalize the study to finite K and see that the number of
solutions obtained for K → ∞ is an upper bound on the number of solutions for any finite K .
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B. Infinite capacity

The case K → ∞ is equivalent to the identical oscillators case with Pi = 0, for all i. In this
limit, the bounds on ε are

lim
K→∞

εmin(K)= −1, lim
K→∞

εmax(K)= 1,

and thus,

lim
K→∞

A0(K, εmin(K))= −nπ/2, lim
K→∞

A0(K, εmax(K))= nπ/2.

An εq is associated to each integer multiple of 2π in
�
−nπ/2,nπ/2

�
corresponding to a stable

solution of Eq. (2.3). There areN = 2 Int[n/4] + 1 such integers. This is illustrated in Fig. 2.

Theorem 4.1. For K → ∞, any stable solution of power flow Eq. (2.3) on a cycle network has
all angle differences in

�
−π/2, π/2

�
. Furthermore all angle differences are equal to 2πq/n, where q

is the winding number of the solution.

Remarks. (i) The principal minors of a matrix A are the determinants of the square subma-
trices of A with the same row and column indices. Sylvester’s criterion states that a matrix is
positive semi-definite if and only if all its principal minors are non-negative.36

(ii) The result of Theorem 4.1 was already known for unidirectional coupling.27 Here we extend
this result to bidirectional interactions. Furthermore, our approach allows to relate the finite
K situation to the infinite K situation.

Proof. The power flow along line ⟨i, i + 1⟩ is

Pi, i+1 = K sin(∆i, i+1) = P∗i, i+1 + Kε,

where {P∗i, i+1} is a reference solution constructed from finite powers. Thus when K → ∞, the sine
of the angle difference along every line of the cycle tends to the same value,

lim
K→∞

sin(∆i, i+1) = ε.
This implies that the angle difference along each line of the network belongs to the set {arcsin(ε),
π − arcsin(ε)}, and thus, the cosine of the angle differences along all the lines takes the same

FIG. 2. Plot of A0(K, ε) as a function of ε (red), for a cycle network of length n = 9, with K → ∞. Horizontal dashed lines
correspond to A0= 2πq with q values indicated. Each intersection of the red line with a blue dashed line gives a stable
solution of Eq. (2.3).
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absolute value with either positive or negative sign. First of all, if all angle differences are arcsin(ε),
the stability matrix defined in Eq. (2.6) is easily expressed as

M = Kc

*.......
,

−2 1 1

1 −2
. . .

. . .
. . . 1

1 1 −2

+///////
-

,

where c B cos(arcsin(ε)) = √1 − ε2. This matrix is negative semi-definite and has only non-positive
eigenvalues by Gershgorin’s circle theorem.36 Thus the solution is stable. Now, if all angle differ-
ences are π − arcsin(ε), then all cosines are negative and the stability matrix is obviously positive
semi-definite. The solution is then unstable. Let us now consider the mixed case where at least one
angle difference is arcsin(ε) and one is π − arcsin(ε). In this case, there exists at least one node i such
that ∆i−1, i = arcsin(ε) and ∆i, i+1 = π − arcsin(ε) and the corresponding stability matrix has the form

M ′ = Kc

*............
,

. . .
. . .

. . . x 1 0
1 0 −1

0 −1 y
. . .

. . .
. . .

+////////////
-

. (4.5)

The principal minor of −M ′with row and column indices {i, i + 1} is
������

0 +1
+1 −y

������
= −1,

which, by Sylvester’s criterion,36 implies that M ′ is not negative semi-definite. In other words, M ′

has at least one positive eigenvalue and thus the solution is unstable. From this we conclude that the
stable solutions for sufficiently large K all have angle differences in

�
−π/2, π/2

�
. They are captured

by finding the intersections ofA0(K, ε) with integer multiples of 2π as illustrated in Fig. 2.
Let q be the winding number of a stable solution for K → ∞. As all angle differences have the

same value ∆ ∈
�
−π/2, π/2

�
, we have

2πq =
n
i=1

∆i, i+1 = n∆=⇒ ∆ = 2πq/n.

The corresponding angles are θi = −2πqi/n, taken in the interval
�
− π,π

�
. �

C. Finite capacity

We now consider finite values for K and Pi’s not all equal to zero. We first show that the
number of solutions to power flow Eq. (2.3) with all angle differences in

�
−π/2, π/2

�
decreases

with K . Second, we show that for finite K , there exist stable solutions with one angle difference
in

�
− π,−π/2

�
∪
�
π/2, π

�
, and we relate them to solutions at larger K with all angle differences in�

−π/2, π/2
�
. This gives an analytical confirmation of the numerical observations of Tilles et al.29

and of Roy and Lahiri.30

Proposition 4.2. For a one-cycle network with n nodes, if K decreases, then A0(K, εmin) in-
creases and A0(K, εmax) decreases.

Proof. From Eqs. (4.3b) and (4.4), the derivative ofA0 with respect to K reads

dA0(K, εmin)
dK

=
′

1 −
(
−1 +

P∗i, i+1 − P∗min

K

)2

− 1
2 P∗min − P∗i, i+1

K2 ,
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where Σ′ indicates that the sum is taken over indices j such that P∗j, j+1 > P∗min. This sum is obviously
non-positive. In the same way, it is easily seen that

dA0(K, εmax)
dK

≥ 0.

�

Proposition 4.2 implies that as K decreases, the interval of values of A0 gets smaller and con-
tains fewer and fewer multiples of 2π. We show now that for finite capacities, the stable solutions
are directly related to the stable solutions for K → ∞, even if some of them have angle differences
in
�
− π,−π/2

�
∪
�
π/2, π

�
. First, we define

A j(K, ε)B

i, j

arcsin
(
ε + P∗i, i+1/K

)
+ π − arcsin

(
ε + P∗j, j+1/K

)
, j = 1, . . . ,n.

The function A0 is the sum of angle differences all taken in the interval
�
−π/2, π/2

�
and for

j = 1, . . . ,n, the function A j is this sum with one angle difference, the jth, taken in
�
− π,−π/2

�

∪
�
π/2, π

�
. We also introduce the following notation:

ciB cos(∆i, i+1).
The sign of ci depends on our choice for ∆i, i+1,

ci =




cos

arcsin

(
ε + P∗i, i+1/K

)
=


1 −

(
ε + P∗

i, i+1/K
)2
,

cos

π − arcsin

(
ε + P∗i, i+1/K

)
= −


1 −

(
ε + P∗

i, i+1/K
)2
.

The domain D, in the (K, ε)-plane, where the functions A j are defined, is such that each arcsine is
well-defined,

D =
�(K, ε) : ε + P∗min/K ≥ −1, ε + P∗max/K ≤ 1

	
. (4.6)

By definition, in the interior of D, the ci’s are non-zero. Let us define the upper and lower bound-
aries ofD,

D1 B
�(K, ε) : ε + P∗max/K = 1

	
,

D0 B
�(K, ε) : ε + P∗min/K = −1

	
.

(4.7)

We next denote by j0 and j1 the indices such that P∗j0, j0+1 = P∗min and P∗j1, j1+1 = P∗max, respectively.
Note that for (K, ε) ∈ D1 [respectively, (K, ε) ∈ D0], the functions A0(K, ε) and A j1(K, ε) [respec-
tively,A j0(K, ε)] have the same value.

Remark. It is possible that multiple lines carry the same maximal or minimal power. In this
case, these indices are not uniquely defined, but we are free to choose any j0 and j1 satisfying
P∗j0, j0+1 = P∗min and P∗j1, j1+1 = P∗max.

For any choice of ai’s in Eq. (4.2), any point (K, ε) ∈ D such that


i ai = 2πq is a solu-
tion (not necessarily stable) of Eq. (2.3). Hence we now study the 2πq-level sets of A j, for
q ∈ Z and j = 0, . . . ,n. Note first that as A j is smooth in the interior of the domain D for any
j, the implicit function theorem39 implies that its level sets are level curves. For any K0, we
call S(K0) ⊂ �

εmin, εmax
�

the set of ε-values corresponding to stable solutions of the power flow
Eq. (2.3), i.e., such that there exists a choice of {ai} in Eq. (4.2) for which

i

ai(K0, ε)= 2πq, q ∈ Z.

Let N (K0) B |S(K0)| be its cardinality. The main results of this section are the following theorem
on the properties ofN (K) and its corollary.

Theorem 4.3. The number of stable solutions of the power flow equations, N (K), is a mono-
tonically increasing function of K.
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Corollary 4.4. The value

N∞B lim
K→∞

N (K) = 2 Int[n/4] + 1

is an upper bound on the number of stable solutions of Eq. (2.3) on a cycle network, independently
of K and {Pi}.

The proof of Theorem 4.3 relies on five lemmas. A major ingredient of the proof is that the
functions A j(K, ε), for j = 1, . . . ,n, have no critical points. This fact and Lemma 4.7 give precise
information about the shape of the level curves ofA j.

Lemma 4.5. For j ∈ {1, . . . ,n}, the functionA j has no critical point in the interior of D.

Proof. For j ∈ {1, . . . ,n}, we have

∂A j

∂ε
=


k

c−1
k .

Assume first that at some point (K, ε) in the interior ofD, ∂A j/∂ε = 0, then

∂A j

∂ε
= 0 ⇐⇒


k

c−1
k = 0 ⇐⇒


k, j

c−1
k = −c−1

j ⇐⇒

k, j

−cj/ck = 1. (4.8)

Recall that as we chose

∆ j, j+1 = π − arcsin
(
ε + P∗j, j+1/K

)
,

we have cj < 0. It is then easy to check that for any k , j,

0 < −cj/ck < 1=⇒ 0 < −cj < ck

=⇒


1 −
(
ε + P∗

j, j+1/K
)2
<


1 −

(
ε + P∗

k,k+1/K
)2

=⇒
(
ε + P∗j, j+1/K

)2
>

(
ε + P∗k,k+1/K

)2
.

There are now two possible cases:

1. if ε + P∗j, j+1/K > 0, then

ε + P∗j, j+1/K > ε + P∗k,k+1/K ⇐⇒ P∗j, j+1 > P∗k,k+1, ∀k , j

=⇒ P∗j, j+1 = P∗max,

2. if ε + P∗j, j+1/K < 0, then

ε + P∗j, j+1/K < ε + P∗k,k+1/K ⇐⇒ P∗j, j+1 < P∗k,k+1, ∀k , j

=⇒ P∗j, j+1 = P∗min.

Thus if j < { j0, j1}, Eq. (4.8) cannot hold andA j has no critical point inD. Let now j ∈ { j0, j1} and
assume that

∂A j

∂ε
=


k

c−1
k = 0.
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We calculate
∂A j

∂K
=


k, j

∂

∂K
arcsin

(
ε + P∗k,k+1/K

)
+

∂

∂K


π − arcsin

(
ε + P∗j, j+1/K

)
= −


k, j

c−1
k P∗k,k+1/K

2 − c−1
j P∗j, j+1/K

2

= −

k, j

c−1
k P∗k,k+1/K

2 +

k, j

c−1
k P∗j, j+1/K

2

=

k, j

(
P∗j, j+1 − P∗k,k+1

)
/
�
K2ck

�
,

which is non-zero as every term is non-negative (respectively, non-positive) if j = j1 (respectively
j = j0). Thus the partial derivatives of A j are never simultaneously zero implying that A j has no
critical point in the domainD. �

Corollary 4.6. For any j ∈ {1, . . . ,n}, the level sets of A j are continuous lines that (i) cannot
end in the interior of D, (ii) are not closed, and (iii) have no trifurcation.

Proof. Any of these situations would imply at least one critical point. �

Lemma 4.7. Let L ∈ R. If there exist K0 ∈ R such that A j1(K0, εmax(K0)) = L, then there is a
single level curve of A j1 = L starting at (K0, εmax(K0)). The same holds for level curves of A j0 = L
starting at (K0, εmin(K0)).

Remark. This lemma means that the red curve in Fig. 3 is unique.

Proof. We prove the first statement, the proof of the second one being similar. We first recall
that

∂A j1

∂K
=


1 −

(
ε +

P∗max

K

)2

− 1
2 P∗max

K2 −

k, j1


1 −

(
ε +

P∗
k,k+1

K

)2

− 1
2 P∗

k,k+1

K2 . (4.9)

FIG. 3. Sketch of the level curve A j = 0 (red curve) and of the neighborhoodU of (K0, εmax(K0)) where the partial derivative
of A j with respect to K always has the same non-zero sign. The neighborhood U is bounded above by the boundary of the
domain D, left and right by the bounds of the interval I0 and is of height ξ∗.
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Consider now a small interval around K0, I0 =
�
K0 − δ0,K0 + δ0

�
. For any K ∈ I0, there is a ξK > 0

such that for all ε ∈
�
εmax(K) − ξK , εmax(K)�, the first term in the right-hand-side of Eq. (4.9) domi-

nates, and the partial derivative ∂A j1/∂K has the same sign as P∗max, which we chose non-zero
above (see discussion below Eq. (4.3b)). Thus setting

ξ∗B min
K ∈I0

{ξK}
allows us to define a neighborhood U ⊂ D of (K0, εmax(K0)),

UB {(K, ε) : |K − K0| < δ0, 0 ≤ εmax(K) − ε < ξ∗} ,
where the partial derivative ∂A j1/∂K always has the same non-zero sign. This neighborhood is
sketched in Fig. 3. But if there is more than one level curve starting at (K0, εmax(K0)) and since
A j1 is not constant, this partial derivative has to change sign in any neighborhood of (K0, εmax(K0)),
which leads to a contradiction. There is therefore at most one such level curve. �

We next investigate how the linear stability of the solutions to power flow Eq. (2.3) varies along
the level curvesA j = 2πq. The two following lemmas show that the only functions leading to stable
solutions areA0,A j0, andA j1.

Lemma 4.8. For any choice of ai’s, the stability matrix M has a second null eigenvalue λ2 (see
Section II B) if and only if 

k

c−1
k = 0.

Proof. Consider the characteristic polynomial of the stability matrix M ,

χ(M)=

������������������������

−c1 − cn − λ c1 · · · 0 · · · cn

c1 −c1 − c2 − λ c2
...

... c2
. . .

. . . 0

0
. . .

...

... cn−1

cn · · · 0 · · · cn−1 −cn−1 − cn − λ

������������������������

.

Adding all rows to the first one, it can be written as χ(M) = det
�
M̃(λ)� with

M̃(λ)=

*...............
,

−λ · · · · · · −λ

c1 −c1 − c2 − λ c2
...

... c2
. . .

. . . 0

0
. . .

...
... cn−1

cn · · · 0 · · · cn−1 −cn−1 − cn − λ

+///////////////
-

.

Expanding the determinant along the first row, we obtain

χ(M) = (−λ)
n
i=1

(−1)i−1 det
�[M̃(λ)]1i�

C (−λ)Q(λ),
(4.10)

where det
�[A]i j

�
stands for the (i, j)-cofactor of A. One eigenvalue obviously vanishes and a second

eigenvalue, λ2, is zero if and only if Q(0) = 0.
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We show now that for i = 2, . . . ,n,

det
�[M̃(0)]1, i�= − det

�[M̃(0)]1, i−1
�
.

Let Ck denote the kth column of matrix M̃(0) with the first row removed. We write

det
�[M̃(0)]1i�=

�����
C1 · · · Ci−2 Ci−1 Ci+1 · · · Cn

�����

=

�������
C1 · · · Ci−2


j,i

Cj Ci+1 · · · Cn
�������

=
�����
C1 · · · Ci−2 − Ci Ci+1 · · · Cn

�����
= − det

�[M̃(0)]1, i−1
�
,

where at the second line, we used that the determinant is not changed by adding a linear combina-
tion of columns to any column, and at the third line, we used the fact that the sum of the elements of
any row is zero. We conclude that

det
�[M̃(0)]1i� = (−1)i−1 det

�[M̃(0)]11
�
. (4.11)

Thus to calculate Q(0), we only have to compute det
�[M̃(0)]11

�
. Since [M̃(0)]11 is tridiagonal,

we compute its LU-factorization using Thomas algorithm,40

[M̃(0)]11=

*..........
,

−c1 − c2 c2

c2 −c2 − c3
. . .

. . .
. . . cn−1

cn−1 −cn−1 − cn

+//////////
-

=

*......
,

1 0
c2/β1 1

. . .
. . .

0 cn−1/βn−2 1

+//////
-

·

*.........
,

β1 c2 0

β2
. . .

. . . cn−1

0 βn−1

+/////////
-

,

where

βiB




−(c1 + c2), if i = 1,

−(ci + ci+1 + c2
i /βi−1), if i , 1.

This factorization is only valid for non-singular matrices, but by continuity, it can be computed
arbitrarily close to points where the determinant vanishes. Computing the determinant of the matrix
[M̃(0)]11 then reduces to computing the product of the βi’s.

Let us define

µiB




1, if i = 0,
i+1
j=1

i+1
k=1
k, j

ck, if i = 1, . . . ,n. (4.12)

In the Appendix, we prove by induction that µi−1 · βi = −µi, for all i = 1, . . . ,n. This allows to
compute the determinant of [M̃(0)]11,

det
�[M̃(0)]11

�
=

n−1
i=1

βi = (−1)n−1 µn−1

µ0
= (−1)n−1

n
j=1

n
k=1
k, j

ck = (−1)n−1
n
j=1

cj ·
n

k=1

c−1
k , (4.13)
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where the last equality holds as long as all ck’s are non-zero, which is true in the interior ofD.
Finally, combining Eqs. (4.10), (4.11), and (4.13), we have

Q(0)= (−1)n−1n
n
j=1

cj

n
k=1

c−1
k ,

and thus,

λ2 = 0 ⇐⇒ Q(0) = 0 ⇐⇒
n

k=1

c−1
k = 0. (4.14)

�

Lemma 4.9. For a given value L ∈ R and j ∈ { j0, j1}, there is at most one point where


k c−1
k

= 0 along a connected component of the level curveA j = L.

Remark. From Lemma 4.5, we already know that if j < { j0, j1},


k c−1
k

is never zero.

Proof. We already know that 
k

c−1
k =

∂A j

∂ε
.

Hence the sum


k c−1
k

equals zero if and only if the level curve ofA j is parallel to the ε axis. Let us
now differentiate the sum


k c−1

k
with respect to ε at such a point, to see how it varies along the level

curve ofA j. Using the fact that c−1
j = −


k, j c−1

k
, we have

∂

∂ε

n
k=1

c−1
k =


k, j

∂

∂ε


1 −

(
ε + P∗k,k+1/K

)2
− 1

2 − ∂

∂ε


1 −

(
ε + P∗j, j+1/K

)2
− 1

2

=

k, j


1 −

(
ε + P∗k,k+1/K

)2
− 3

2

1 −

(
ε + P∗j, j+1/K

)2
−1

×

1 +

(
ε + P∗j, j+1/K

) (
ε + P∗k,k+1/K

) (
P∗k,k+1 − P∗j, j+1

)
/K.

The only term in the last expression that is not necessarily positive is
(
P∗
k,k+1 − P∗j, j+1

)
/K . But

if j = j0 (respectively, j = j1), this term is always positive (respectively, negative) for k , j, and
consequently the whole sum is positive (respectively negative). Thus, following a connected compo-
nent of the level curve A j = L, whenever


k c−1

k
hits zero, its derivative always has the same sign,

therefore, by continuity, it cannot cross zero more than once. This completes the proof. �

The proof of Theorem 4.3 finally relies on Taylor’s Lemma 2.1,11 which we recall here.

Lemma 4.10 (Taylor11). Let {θ(0)i } be any stable solution of power flow Eq. (2.3) on any
network. Then for any non-empty node subset S,

⟨i j⟩ :
i∈S, j<S

cos(∆(0)i j ) ≥ 0.

In other words, if we can partition the nodes of the network in two sets S and Sc, such that the
sum of cosines of the angle differences on all the lines between these two sets is smaller than 0,
then the solution is unstable. In our case of a cycle network, if the angle differences on two lines are
larger than π/2 or less than −π/2, removing these two lines splits the network in two parts, S and Sc,
such that 

⟨i j⟩ :
i∈S, j<S

cos(∆(0)i j ) < 0,

and the solution is unstable. We conclude that there is at most a single |∆i, i+1| > π/2. We are now
ready to prove Theorem 4.3.
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Remark. Instead of Taylor’s Lemma 2.1, we could use the necessary condition for stability of
Ref. 41 that if {θ(0)i } is a stable solution of power flow Eq. (2.3), then there exists a spanning tree T
of the network such that for all edges e ∈ ET ,

cos(∆(0)e ) ≥ 0.

Taylor’s lemma seems to be slightly more general. As a matter of fact, it is an easy exercise to
construct an example of a weighted graph containing a positively weighted spanning tree, but such
that there exists a non-empty node subset S with

⟨i j⟩ :
i∈S, j<S

cos(∆(0)i j ) < 0.

In this case, Taylor’s Lemma 2.1 implies instability, while Ref. 41 does not.

Proof of Theorem 4.3. Since for any K0, A0(K0, ε) is an increasing function of ε, we know that
for any integer q ∈

�
−n/4,n/4

�
, the level set of A0 = 2πq is a single level curve. Furthermore, any

point on such a level curve corresponds to a stable solution of power flow Eq. (2.3). Starting from large
values of K and following this level curve while decreasing K , Corollary 4.6 implies that it meets the
boundary ofD at some point. Assume that it meets the upper boundaryD1 at X = (K∗, ε∗) as shown
in Fig. 4 (the case of the lower boundary D0 is treated in the same way, interchanging j1 and j0 in
what follows). We know thatA0(K∗, ε∗) = A j1(K∗, ε∗). AsA j1 is monotonous on D1 and smooth in
the interior of the domainD, there is a level curve ofA j1 = 2πq starting at X (the red line in Fig. 4),
and by Lemma 4.7, it is unique. Furthermore, at this point, the corresponding solution is stable.

According to Corollary 4.6, the level curve of A j1 either meets the boundary of D or goes to
K → ∞. First, it cannot meet D1 because the value of A j1 is strictly increasing with K on D1 and
the level curve cannot be closed by Corollary 4.6. Second, if it goes to K → ∞, we know from
Section IV B that for K large enough, the solution is unstable. Third, if it meets D0, Lemma 4.10
implies that at this point, the corresponding solution is unstable, because at this point, |∆ j1, j1+1| > π/2
and |∆ j0, j0+1| = π/2. Thus along the level curve considered, the eigenvalue λ2 has to change sign.
Following Lemmas 4.8 and 4.9, this happens only once, at point Y shown in Fig. 4 where the level
curve changes direction with respect to K .

Assume now that there is another connected component of the level set of A j1 = 2πq. From
Corollary 4.6, it cannot be closed and by monotonicity of A j1 along D1 and Lemma 4.7, it cannot
meet the upper boundary D1. Thus the corresponding solutions are unstable at both ends of this
level curve and as, by Lemmas 4.8 and 4.9, λ2 changes sign at most once along a level curve, then
the corresponding solutions are unstable all along this level curve.

FIG. 4. Level curves A0(ε,K )= 2πq (blue line) and A j1(ε,K )= 2πq (dashed red line). Both functions are undefined above
the boundary D1 (black line). The corresponding solutions are stable (λ2 < 0) along the blue curve and between points X

and Y on the dashed red curve, and unstable (λ2 > 0) along the dashed red curve, from Y to K → ∞.
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We conclude that the number of ε values corresponding to stable solutions of the power flow
equations increases with K , because a solution appears at point Y and exists for any larger K . �

Remark. If there are two indices i1 and i2 such that P∗i1, i1+1 = P∗i2, i2+1 = P∗min (the same works
with P∗max), then


k c−1

k
> 0 for ai2 ∈

�
− π,−π/2

�
∪
�
π/2, π

�
and all other ai’s in

�
−π/2, π/2

�
,

because ci1 = −ci2 and then 
k

c−1
k =


k,i1, i2

c−1
k > 0.

Hence, inside D, λ2 never changes sign along the level curves of Ai1 and Ai2. This result together
with the fact that for K → ∞ the solutions corresponding to the level curvesAi1 and Ai2 are known
to be unstable implies that such solutions remain unstable also for finite values of K. Which implies
that, in this case, no solution having one angle difference outside the interval [−π/2, π/2] can be
locally stable.

To summarize, we showed that while decreasing K , N (K) also decreases, and that any stable
solution of Eq. (2.3) for finite K is a continuation of a solution for K → ∞. We also showed that
for finite K , stable solutions have at most one angle difference outside [−π/2, π/2], and that such
solutions are continuations of solutions with all angle differences in [−π/2, π/2]. Fig. 5 illustrates
the whole situation. The domain D is bounded above by the curve D1 and below by D0. The blue
lines are the 2πq-level curves of A0 for q ∈ {−1,0,1}, i.e., any point on a blue curve gives a pair of
values (K, ε) corresponding to a stable solution of Eq. (2.3) with all angle differences in [−π/2, π/2].
The red dashed lines and the green dashed-dotted line are the 2πq-level curves of A j1 and A j0,
respectively. The points on the red dashed curves correspond to solutions (not necessarily stable)
where the angle difference on the line carrying P∗max is in (−π,−π/2) ∪ (π/2, π] and the points on
the green dashed-dotted curve correspond to solutions where the angle difference along the line
carrying P∗min is in (−π,−π/2) ∪ (π/2, π]. Any blue line meets either a red dashed line on D1 (a
zoom-in of this is depicted in Fig. 4) or green dashed-dotted line on D0. While increasing K , stable
solutions appear on the level curves of A j1 and A j0 (at point Y in Fig. 4), thus with one angle
difference larger than π/2 (or less than −π/2). This angle difference then enters [−π/2, π/2] while K

FIG. 5. Level curves A0= 2πq (blue), A j1= 2πq (dashed red), and A j0= 2πq (dashed-dotted green), for different
q-values, in the (K, ε)-plane. The level curves of A0 and A j1 meet on the upper boundary D1 of the domain D defined
in Eq. (4.6), and the level curves of A0 and A j0 meet on the lower boundary D0. The two boundaries D0 and D1 meet at
Kc = (P∗max−P∗min)/2. A zoom-in of the region where the level curves A0= 2π and A j1= 2π meet is depicted in Fig. 4.
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increases. This happens at point X in Fig. 4. Then the stable solution persists for any larger K along
the corresponding level curve ofA0.

V. CONCLUSION

We have investigated the multiplicity of stable stationary solutions to the Kuramoto model. For
any network, Theorem 3.6 shows that any two different solutions of Eqs. (1.2) and (2.3) differ by a
combination of circulating flows around the cycles of the network. We showed that these loop flows
are quantized and labelled by a topological winding number. In the particular case of single-cycle net-
works, we then derived an upper bound on the number of stable solutions of the power flow Eq. (2.3),

N ≤ 2 Int [n/4] + 1,

which is algebraic in n, the length of the cycle. It significantly improves the exponential bounds
obtained in Refs. 17 and 18. Our result generalizes the bounds obtained by Ochab and Góra,28

dealing in particular with angle differences larger than π/2, and extends the results of Rogge and
Aeyels27 to bidirectional couplings.

As parallel results, we obtained some sharp conditions for the solutions on a cycle network
with some angle differences in

�
− π,−π/2

�
∪
�
π/2, π

�
to be stable. We showed that at most one

angle difference can be larger than π/2 in a stable solution and it can only be the case on the most
loaded line. Moreover, any stable solution with an angle difference larger than π/2 can be directly
connected to a solution with all angle differences in [−π/2, π/2] for the same network at larger K .

The quantized loop flows discussed above are highly undesirable in electric power grids. They
transmit power which is never distributed but only generates ohmic losses. A deeper understanding
of loop flows, how they appear and how to make them disappear, could greatly help in devising
power grids protected against their emergence. In all likelihood, this would be of great interest for
power grid operators.

Another line of possible future research would be to compare the stability of different solutions.
This could be done in at least two ways, first, comparing the spectra of the stability matrices for
different solutions, second, comparing the volumes of the respective basins of attraction. This sec-
ond approach was proposed in Ref. 31. Of particular interest would be to relate these two measures
of stability with winding numbers.

Obviously, the next step in this investigation is to study how our results can be extended to
more general networks with multiple cycles. It is clear that in the case of independent cycles as in
Fig. 6(a), the number of stable solutions is bounded by

N = (2 Int [n1/4] + 1) (2 Int [n2/4] + 1) ,
where n1 and n2 are the number of edges in the two cycles, respectively. In this case, a loop flow on
one of the cycles does not influence the loop flow on the other cycle. The problem becomes more
intricate when we have to deal with cycles sharing edges, where the loop flows add, Fig. 6(b). Here
the flow on one of the cycles limits the loop flow on the other cycle because it could saturate the
capacity of the common lines. Work along those lines is in progress.

FIG. 6. Two graphs with two cycles. Left: the cycles are independent but connected, the loop flow on one of them does not
influence the loop flow on the other one. Right: the cycles are not independent. Thus having a loop flow on one of them
restricts the possible flows on the other one.
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APPENDIX: LU -DECOMPOSITION OF THE STABILITY MATRIX

We prove inductively that the diagonal elements βi of the upper triangular matrix of the
LU-factorization of the stability matrix, obtained through Thomas algorithm,40 satisfy the relation

µi−1 · βi = −µi,

where µi’s are defined in Eq. (4.12). For i = 1, we have

µ0 · β1= 1 · (−c1 − c2)
= −µ1.

Suppose now that µi−1 · βi = −µi. Let us show that µi · βi+1 = −µi+1,

µi · βi+1= µi *
,
−ci+1 − ci+2 −

c2
i+1

βi
+
-

= −ci+1µi − ci+2µi + c2
i+1µi−1

= −ci+1

i+1
j=1

i+1
k=1
k, j

ck − ci+2

i+1
j=1

i+1
k=1
k, j

ck + c2
i+1

i
j=1

i
k=1
k, j

ck

= −ci+1

*...
,

ci+1

i
j=1

i
k=1
k, j

ck +
i

k=1

ck
+///
-

− ci+2

i+1
j=1

i+1
k=1
k, j

ck + c2
i+1

i
j=1

i
k=1
k, j

ck

= −ci+1

i
k=1

ck − ci+2

i+1
j=1

i+1
k=1
k, j

ck

= −
i+2
j=1

i+2
k=1
k, j

ck

= −µi+1.
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