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The number N of stable fixed points of locally coupled Kuramoto models depends on
the topology of the network on which the model is defined. It has been shown that cycles
in meshed networks play a crucial role in determining N because any two different
stable fixed points differ by a collection of loop flows on those cycles. Since the number
of different loop flows increases with the length of the cycle that carries them, one
expects N to be larger in meshed networks with longer cycles. Simultaneously, the
existence of more cycles in a network means more freedom to choose the location of
loop flows differentiating between two stable fixed points. Therefore, N should also
be larger in networks with more cycles. We derive an algebraic upper bound for the
number of stable fixed points of the Kuramoto model with identical frequencies, under
the assumption that angle differences between connected nodes do not exceed π/2. We
obtain N ≤∏c

k=1 [2 · Int(nk/4) + 1], which depends both on the number c of cycles
and on the spectrum of their lengths {nk}. We further identify network topologies
carrying stable fixed points with angle differences larger than π/2, which leads us to
conjecture an upper bound for the number of stable fixed points for Kuramoto models
on any planar network. Compared to earlier approaches that give exponential upper
bounds in the total number of vertices, our bounds are much lower and therefore
much closer to the true number of stable fixed points. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4978697]

I. INTRODUCTION

To analyze and describe the phenomena of “temporal organization of matter,” Kuramoto proposed
a model of coupled oscillators defined by the following set of nonlinear differential equations:1,2

θ̇i =Pi −

n∑
j=1

Kij sin(θi − θj) , i= 1, . . . n . (1.1)

These coupled differential equations govern the dynamics of the angular coordinates θi of n one-
dimensional oscillators with natural frequencies Pi, interacting with one another via a coupling that
is odd and periodic in angle differences. Since Kuramoto’s original paper,1 the model has established
itself as a cornerstone in the theory of synchrony and synchronization phenomena in coupled dynam-
ical systems, in great part thanks to its simplicity, which allows for analytical treatments but still
captures many key ingredients of these complex problems.3–5

For all-to-all coupling and for n→∞, a mean-field treatment based on the continuous limit
approximation facilitates the analytical treatment of the Kuramoto model. In particular it was observed
early on that for all-to-all constant coupling, Kij ≡K/n, a stable synchronous state {θ(0)

i } emerges for

K >Kc with θ̇(0)
i − θ̇

(0)
j = 0, for a finite fraction of pairs of oscillators (i, j). The critical coupling

strength Kc depends on the distribution g(P) of natural frequencies Pi.2 Furthermore, full phase-
locking with θ̇(0)

i − θ̇
(0)
j = 0 for all i, j is possible for large enough K provided that g(P) has compact

support.6,7
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It is the rule, however, rather than the exception that physical systems of coupled oscillators have
short-range instead of all-to-all coupling. Short-range coupling renders the problem significantly
harder because the mean-field approach breaks down, but simultaneously more interesting, most
notably because there may be more than one stable fixed point solution, contrarily to the model
with all-to-all coupling.8,9 As a matter of fact, determining the number of linearly stable fixed point
solutions for locally coupled Kuramoto models is an unsolved mathematical problem. Fixed point
solutions to Eq. (1.1) are determined by

Pi =

n∑
j=1

Kij sin(θi − θj) , (1.2)

i.e., by a set of n nonlinear transcendental equations. Eqs. (1.1) and (1.2) are invariant under θi

→ θi + ϕ0, so that it is trivial to construct infinitely many fixed points starting from a given fixed
point. Solutions are however usually counted modulo constant angle shifts. Upper bounds for the
number N of fixed point solutions of Eq. (1.1) exist, which are based on algebraic geometrization
methods.10,11 Algebraic geometrization consists in rewriting Eq. (1.1) as polynomials in trigono-
metric functions of angles. The method provides a list of candidate fixed points of Eq. (1.1) whose
stability needs to be confirmed or discarded numerically. This method guarantees that all fixed points
are found but leads to a bound on the number of stable fixed points which is exponential in the
number n of nodes. Exponential bounds are easy to understand qualitatively since new fixed point
solutions to Eq. (1.2) can be obtained in principle from any known fixed point solution via θ(0)

i − θ
(0)
j

→ π − (θ(0)
i − θ

(0)
j ) for any edge 〈ij〉.12 The latter substitution leads to an exponential number ∝ 2n of

fixed point solutions. It is expectable that much better bounds exist. As a matter of fact, the vast major-
ity of fixed point solutions obtained with the above substitution are unstable and thus of lesser physical
significance.

Another way to obtain a bound on N is to rely on brute-force numerics and calculate how many
different fixed points one converges to, starting from a large number of initial conditions {θi(t = 0)}.
This method is however limited, first, by the small volume of the basin of attraction of some fixed
points,13,14 which require a finite resolution in angle space and second, by the exponentially large
number (2π/∆)n of initial conditions needed to have a given angular resolution of ∆ in angle space.
Moderate resolution and number of oscillators, ∆= 0.5 and n = 20, already require an impractically
large number '1021 of initial conditions. Clearly, a novel approach is needed to estimate N.

Below we present such a novel approach and derive an upper bound on the number of stable
fixed point solutions to Eq. (1.1) defined on a planar network with equal natural frequencies, Pi ≡Ω.
That bound is generally valid, under the only assumption that angle differences in the stable fixed
points do not exceed π/2. We further identify networks where stable fixed points exist which violate
that latter condition and conjecture an upper bound on N valid in that case. Our method is based
on the theorem of Refs. 15 and 16 which shows that, if there is more than one fixed point solution
to Eq. (1.1), these fixed point solutions differ by a collection of loop flows (to be defined below)
around the cycles of the network. Inspired by this result, we explore the possibility to generate such
loop flows around each and every cycle in the network and investigate how many of the fixed points
obtained in this way remain linearly stable.

In this manuscript, we amplify on our earlier work16 which gave an algebraic upper bound
N ≤ 2 · Int[n/4] + 1 for the number of stable fixed points of Eq. (1.1) on a single-cycle network
of length n, where Int[·] denotes the integer part (floor) function. Reference 16 follows a rather
long series of investigations which we briefly summarize here. The question of the number of stable
fixed point solutions to systems of coupled oscillators dates back at least to the work of Korsak17

and Tavora and Smith18 in the context of electrical power flow problems, which are related to the
Kuramoto model in the lossless line approximation (see, e.g., References 16 and 19). Korsak explicitly
calculated different, linearly stable fixed points for a simple network, which differ from one another by
a circulating electrical current around a cycle formed by the network. This was followed by a number
of investigations, most of them numerical or on small networks in the context of electrical power
grids; see, e.g., Refs. 20–24 for a necessarily incomplete, but representative list of the large literature
in that direction. Bounds for the number of fixed point solutions in the spirit of the substitution
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argument given after Eq. (1.2) were constructed in Refs. 10, 22, and 25, which gave exponential
upper bounds for the number of stable fixed points of Kuramoto/power flow models. Reference 10
observed numerically, however, that the number of stable fixed point solutions is much smaller than
this bound.

Tavora and Smith18 realized that circulating loop flows such as those discussed by Korsak17 can
only take discrete values because angles are defined modulo 2π. As a matter of fact, single-valuedness
of angle coordinates requires that summing over angle differences around any cycle in the network
on which Eqs. (1.1) and (1.2) are defined must give an integer multiple of 2π in order to get back to
the initial angle, modulo 2π. This defines topological winding numbers qk ,

qk = (2π)−1
nk∑
`=1

∆`+1,` ∈ Z , (1.3)

which are integers. The sum runs over all nk nodes (locating individual oscillators) around any (the kth)
cycle in the network on which the model is defined, and node indices on a cycle satisfy nk + 1→ 1.
We introduce ∆ij := θi − θj taken modulo 2π in the interval (−π, π]. We will alternatively use the
notation ∆e =∆ij, where e= 〈ij〉 is a single edge index. The topological meaning of qk is obvious as it
counts the number of times the oscillator angles wind around the origin in the complex plane as one
goes around the kth cycle. This latter observation eventually led to the characterization of circulating
loop flows with discrete topological winding numbers.6,16,26,27 Using winding numbers, Rogge and
Aeyels12 obtained an algebraic upper bound N ≤ 2 · Int[n/4] + 1 for the number of stable fixed
point solutions with any angle difference in a Kuramoto model on a n-node ring with unidirectional
nearest-neighbor couplings. The same upper bound has been calculated by Ochab and Góra28 in
a nonoriented n-node Kuramoto ring with nearest-neighbor coupling, under the condition that all
angle differences are smaller than π/2. This upper bound is reached when the coupling strength
goes to infinity, equivalently corresponding to Pi = 0, for all i in Eqs. (1.1) and (1.2), i.e., to identical
oscillators. References 12 and 28 on single-cycle networks were complemented by our recent work,16

which showed that the bound N ≤ 2 · Int[n/4] + 1 is still valid for nonoriented coupling, even when
one angle difference exceeds π/2, and that no stable fixed point exists with more than one angle
difference exceeding π/2 for single-cycle networks. These results are summarized in Table I.

We finally note that Ref. 29 investigated different stable fixed point solutions, which were later
classified according to two integers, q (the winding number mentioned above) and ` (the number of
angle differences larger than π/2) in Ref. 30. Reference 16 puts this classification into perspective
as it showed that, based on a theorem due to Taylor31 (see also Ref. 32), only ` = 0, 1 is possible on
a single-cycle network. In a somewhat different but related direction of investigation, Wiley et al.13

investigated the size of basins of attraction for synchronous fixed point solutions with different q in
a cycle network of identical oscillators and proposed that they are smaller at higher q.

We think that the present manuscript makes a significant step forward in generalizing the bound
found in and the method of Ref. 16 to multi-cycle, planar networks. The problem here is threefold.
First, one must account for an effective coupling between neighboring cycles with common edges.
Along the latter, loop flows are superimposed, which couples two conditions expressed in Eq. (1.3)
for two different cycles. Second, this superposition leads to increased or decreased angle differences,
which sometimes jeopardizes the stability of the resulting fixed point solutions. Third, in meshed
networks, one has to revisit the one-to-one relation between the number of stable fixed points and

TABLE I. Existing bounds on the number of stable fixed points of the Kuramoto model.

Reference Number of fixed points bounded by Conditions on graph

12 2 · Int(n/4) + 1 Single-cycle, unidirectional coupling
28 2 · Int(n/4) + 1 Single-cycle, ∆ij < π/2, ∀〈ij〉
16 2 · Int(n/4) + 1 Single-cycle
10, 11 ∝2n Any network
Present paper

∏c
k=1 [2 · Int(nk/4) + 1] Planar, no single-shared edge, Pi = P0, ∀i
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number of possible winding numbers on which the strategy of Ref. 16 is based. Below, we present a
method that overcomes these obstacles, which allows us to generalize the bound found in Refs. 12,
16, and 28.

The paper is organized as follows: In Section II we formally present the model we investi-
gate. We derive our upper bound on the number of stable fixed points of Eq. (1.2) with Pi ≡Ω in
Section III. In Section IV, we give two examples of networks where fixed points with some angle
differences larger than π/2 are stable. A conclusive discussion is given in Section V.

II. THE MODEL

Let G be a connected planar graph with n vertices and m edges, and let Pi ∈R, for i= 1, . . . , n, be
the natural frequencies of one-dimensional oscillators located at each vertex. A variable angle θi ∈R,
i= 1, . . . , n, is associated with each vertex and a coupling constant K ≥ 0 with every edge 〈ij〉. We are
interested in the stationary points of the Kuramoto model defined on G, whose dynamics is defined
by

θ̇i =Pi − K
∑
j∼i

sin
(
θi − θj

)
, (2.1)

where j ∼ i indicates that the sum is taken over the neighboring vertices j of i. From now on, we
assume identical frequencies, Pi =Ω, for all i, and consider the angles in a rotating frame, θi→Ωt+θi.
Eq. (2.1) then reads

θ̇i =−K
∑
j∼i

sin
(
θi − θj

)
. (2.2)

The linear stability of a fixed point {θ(0)
i } of Eq. (2.2) is assessed by considering small per-

turbations about this fixed point, θ(0)
i → θ(0)

i + δθi and linearizing the time evolution of δθi. One
obtains

δθ̇i =−
∑
j∼i

K cos(θ(0)
i − θ

(0)
j )(δθi − δθj), i= 1, . . . , n .

The stability of the fixed point is then determined by the Lyapunov exponents which are the eigenvalues
of the stability matrix M({θ(0)

i }),

Mij :=




K cos(θ(0)
i − θ

(0)
j ) , if i∼ j ,

−
∑
k∼i

K cos(θ(0)
i − θ

(0)
k ) , if i= j ,

0 , otherwise.

(2.3)

The matrix M is real symmetric, and its spectrum is then real. Obviously,
∑

i Mij =
∑

j Mij = 0, implying
that one eigenvalue is always zero, λ1 = 0. A fixed point is then stable if and only if the stability matrix
M is negative semidefinite, i.e., when its largest nonvanishing eigenvalue is negative, λ2 < 0.

Any fixed point of Eq. (2.2) satisfies∑
j∼i

sin(∆ij)= 0 , i= 1, . . . , n , (2.4)

where ∆ij is defined after Eq. (1.3). An obvious fixed point is given by ∆ij = 0 for all 〈ij〉, i.e., all
the angles are equal, but other fixed points may exist.12,17,26,28 A simple example is provided by the
single-cycle networks considered in Refs. 12, 16, 17, 26, and 28, where Eq. (2.4) can be satisfied
if sin(∆i,i−1)= sin(∆i+1,i). When sin(∆i+1,i), 0, a finite loop flow of magnitude Kε =K sin(∆i+1,i)
circulates around the cycle. Because winding numbers are integers [Eq. (1.3)], ε and ∆i+1,i can take
only discrete values. Reference 27 made a connection between that discreteness and quantization of
circulation around a superfluid vortex. Accordingly loop flows are alternatively referred to as vortex
flows.

Vortex flows are not limited to single-cycle networks. According to Refs. 15 and 16, two fixed
points differ by a collection of loop flows on any of the different cycles of G. For a vertex i on a
given cycle of G, such a flow increases the interaction strength between i and one of its neighbors on
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the cycle, sin(∆ij)→ sin(∆ij) + δ, but decreases the interaction strength with its other neighbor in the
cycle by the same amount, sin(∆ik)→ sin(∆ik) − δ. Eq. (2.4) is then still satisfied.

For any connected graph G with n vertices and m edges, we can define a set of fundamental
cycles. Let T ⊂G be a spanning tree of G and r an arbitrary vertex of G which we call the root. Each
edge of W :=G \ T closes a cycle of G. The fundamental cycle associated with an edge 〈ij〉 ∈W is
the set of edges obtained by concatenation of the unique path on T from r to i, the edge 〈ij〉, and
the unique path on T from j to r, with the prescription that if the resulting path goes twice through
an edge, then we remove the latter from the path. This gives us c = m � n + 1 fundamental cycles
which form together a cycle basis. Any cycle of G is a linear combination of fundamental cycles (see
Ref. 33 for more details). If the graph G is planar, a wise choice of the spanning tree T gives a set of
fundamental cycles defined by the edges surrounding each face of the embedding of G in R2. From
now on, we focus on connected planar graphs and choose this fundamental cycle basis. We do not
consider tree-like parts on G, since angle differences on such parts are uniquely defined and have no
influence on the dynamics of the rest of the network. Tree-like parts can therefore be absorbed in the
node that connects them to the meshed part of G, which is why we neglect them in the following.

Let L1, . . . ,Lc be the sets of edges composing each fundamental cycle. For k = 1, . . . , c, we
define mk the number of edges exclusively on cycle k and for k , `, mk` is the number of edges
common to the two cycles k and `. Because we restrict ourselves to planar graphs, no edge is
common to more than two cycles. We then define nk :=mk +

∑
`,k mk` the number of elements in Lk .

We define Kεk , the value of the vortex flow on cycle Lk , for k = 1, . . . , c, where εk ∈R is the vortex
flow parameter. Any vortex flow can be uniquely written as a linear combination of vortex flows on
fundamental cycles.

We arbitrarily fix an orientation to each edge and each cycle independently. We can now define
the edge-cycle incidence matrix, S ∈Rm×c, as follows:

Sek :=



+1 if e ∈Lk with the same orientation,
−1 if e ∈Lk with opposite orientation,
0 if e <Lk ,

where e is an edge index and k a cycle index. We define the interaction strength on edge 〈ij〉 as
Pij :=K sin(∆ij). As the columns of S are the edge vectors of the fundamental cycles, the interaction
strength on any edge e= 〈ij〉 can be written as

Pij =K
∑

k:e∈Lk

Sekεk , (2.5)

where the sum is taken over all cycles containing edge e. The magnitude of the interaction strength
on each edge is bounded by the coupling on that edge; therefore, for every edge e= 〈ij〉,

−K ≤ Pij ≤K =⇒ −1 ≤
∑

k:e∈Lk

Sekεk ≤ 1 ,

which defines a parameter domain DG ⊂R
c of possible values for the vector of vortex flows ~ε :=

(ε1, . . . , εc).
From now on, we consider stable fixed points of Eq. (2.2) with all angle differences in [−π/2, π/2].

Let ~ε ∈DG be the vortex flow vector of a fixed point of Eq. (2.2). The angle difference on edge e= 〈ij〉
is ∆ij ∈ [−π/2, π/2], and is given by

∆ij(~ε)= arcsin
(
Pij(~ε)/K

)
= arcsin *.

,

∑
k:e∈Lk

Sekεk
+/
-

. (2.6)

The angle variables θi are single-valued; therefore, the sum of angle differences (taken modulo 2π)
around any cycle must be an integer multiple of 2π,∑

e∈Lk

∆e(~ε)= 2πqk , k = 1, . . . , c , (2.7)

which defines the winding number qk ∈ Z on cycle Lk . Eq. (2.7) is equivalent to Eq. (1.3), with
the sum being taken over edges instead of vertices. It states in particular that to any fixed point of
Eq. (2.2), we can associate a point ~ε ∈DG, but that not any ~ε gives a fixed point of Eq. (2.2).
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Remark. If a fixed point has all angle differences in [−π/2, π/2], then its stability matrix is
diagonal dominant. According to Gershgorin’s Circle Theorem,34 the stability matrix is then negative
semidefinite and the fixed point is stable. This was previously noted in Ref. 18.

Define the quantization function

~A= (A1, . . . ,Ac):DG→R
c ,

whose components are the sums of angle differences around the corresponding fundamental cycles,

Ak(~ε) :=
∑
e∈Lk

∆e(~ε)=
∑
e∈Lk

arcsin *.
,

∑
`:e∈L`

Se`ε`
+/
-

, k = 1, . . . , c .

Remark. We call ~A quantization function because Eq. (2.7) leads to Ak = 2πqk , which is anal-
ogous to quantization conditions in quantum mechanics such as quantization of circulation around
vortices in superfluids or of fluxes through superconducting rings. Note however that there is no
quantum mechanics in the Kuramoto model.

Define next the level sets Qq
k :=

{
~ε ∈DG:Ak(~ε)= 2πq

}
, for k = 1, . . . , c and q ∈ Z. It is easy to

check that for any k, there are at most

Nk = 2 · Int[nk/4] + 1

distinct level sets for Ak in the domain DG.16 Define finally the intersection of level sets

Q(~q) :=
c⋂

k=1

Qqk

k , ~q= (q1, . . . , qc) ∈ Zc . (2.8)

These definitions bring us to the following proposition, which will be useful in Sec. III.

Proposition 2.1. Stable fixed point solutions of Eq. (2.2) with winding vectors ~q= (q1, . . . , qc)
and angle differences in [−π/2, π/2] are in a one-to-one correspondence with vortex flow vectors
~ε ∈Q(~q).

Proof. Eq. (2.6) associates a fixed point of Eq. (2.2) with each ~ε ∈Q(~q). By assumption, this
fixed point has all angle differences in [−π/2, π/2] and winding vector ~q with components given
by Eq. (2.7). Any fixed point of Eq. (2.2) is a collection of vortex flows, i.e., a point ~ε ∈DG. By
definition again, this point belongs to Q(~q). Assume that Q(~q) is not empty and let ~η, ~µ ∈Q(~q), such
that ∆e(~η)=∆e(~µ), for all edges e. This means that for each edge e,

c∑
k=1

Sekηk =

c∑
k=1

Sek µk ,

and in matricial form

S ·
(
~η − ~µ

)
= 0 .

As the columns of S correspond to a cycle basis of G, they are linearly independent, implying ~η = ~µ.
This concludes the proof of the one-to-one correspondence. �

III. BOUND ON THE NUMBER OF STABLE FIXED POINTS

In this section, we show that for a given winding vector, ~q ∈ Zc, the corresponding level sets Qqk

k ,
k = 1, . . . , c intersect at most at one point. We then derive some bounds on the number of stable fixed
points of Eq. (2.2) with all angle differences less than π/2. The following theorem is a key to obtain
this bound, which we later derive in Corollary 3.2.

Theorem 3.1. Let G be a planar graph and ~A:DG→R
c the quantization function associated

with its fundamental cycle basis defined on the faces of the embedding of G inR2. For a given winding
vector ~q ∈ Zc, the intersection, Eq. (2.8), of its level sets is either a single point or empty.
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Proof. For a planar network composed of c fundamental cycles, Eq. (2.7) reads

Ak(~ε) :=mk arcsin(εk) +
∑
i,k

mki arcsin(εk − εi)= 2πqk , k = 1, . . . , c . (3.1)

For each k, Eq. (3.1) defines a level set, Qqk

k ⊂DG of possible values for ~ε. Assume that these level

sets intersect in two distinct points of DG, ~η and ~µ. Let ~ξ := ~µ − ~η be the difference between these
two points. Because ~η and ~µ are assumed distinct, ~ξ has at least one non-zero component. Without
loss of generality, we assume this component to be positive. We then order the cycles such that
ξ1=max` {ξ` } > 0. We now consider the directional derivative of Ak for k = 1, . . . , c in the direction
of ~ξ,

∇Ak(~ε) · ~ξ =
mkξk√
1 − ε2

k

+
∑
i,k

mki(ξk − ξi)√
1 − (εk − εi)

2
. (3.2)

At each end of the segment defined by ~η + α~ξ, α ∈ [0, 1], the function Ak takes the same value. Thus
the directional derivative either is constant and equal to zero or changes sign for some α ∈ (0, 1).
Consider Eq. (3.2) with k = 1,

∇A1(~ε) · ~ξ =
m1ξ1√
1 − ε2

1

+
∑
i,1

m1i(ξ1 − ξi)√
1 − (ε1 − εi)

2
. (3.3)

First if m1 > 0, then the sum of terms on the right-hand-side is strictly positive. Thus the
directional derivative of A1 is never zero for α ∈ (0, 1).

Second, if m1 = 0 and there exist a cycle ` such that m1` > 0 and ξ` < ξ1, then the right-hand-side
of Eq. (3.3) is positive.

Third, if m1 = 0 and for all ` such that m1` > 0, ξ1 = ξ` , then either ξk = ξ1 for all k = 1, . . . , c,
in which case there exist k0 such that mk0 > 0, or there exist k0 and k1 such that ξ1 = ξk0 > ξk1 and
mk0k1 > 0. In both cases, considering Ak0 instead of A1 in Eq. (3.3), we obtain that the right-hand-side
is strictly positive.

Therefore, the directional derivative on the left-hand-side of Eq. (3.3) does not vanish along
~ε = ~η+α~ξ for any α. This contradicts the assumption that ~η and ~µ are distinct points of the intersection
of level sets Q(~q) and concludes the proof. �

Theorem 3.1 implies that the set of stable fixed points of Eq. (2.2) with angle differences in
[−π/2, π/2] injects in the set of possible winding vectors. In other words, two distinct fixed points
with angle differences in [−π/2, π/2] have distinct winding vectors. The number of stable fixed points
of Eq. (2.2) is then bounded by the number of possible winding vectors.

Corollary 3.2. For any planar graph G, the number N∗ of stable fixed points of Eq. (2.2) with
angle differences in [−π/2, π/2] is bounded from above as

N∗ ≤
c∏

k=1

[2 · Int (nk/4) + 1] . (3.4)

Proof. For all k = 1, . . . , c, the function Ak takes values in [−nkπ/2, nkπ/2] and thus qk ∈

{−Int[nk/4], . . . , Int[nk/4]}. There are then at most
∏c

k=1 [2 · Int (nk/4) + 1] possible winding vectors
~q. According to Theorem 3.1, for each of these winding vectors, the corresponding level sets Qqk

k
intersect at most at a single point. The one-to-one correspondence between fixed points of Eq. (2.2)
and intersections of these level sets expressed in Proposition 2.1 concludes the proof. �

Remarks.

(i) Note that in Corollary 3.2 we restrict ourselves to stable fixed points with all angle differences
in [−π/2, π/2] whose number N∗ is, in general, lower than the total number of stable fixed
points N.

(ii) The bound on N∗ is algebraic in the length of the cycles. This is a significant improvement in
the previously known bounds which are exponential in the number of vertices. Nevertheless,
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the bound of Corollary 3.2 is not yet tight, because some choices of ~q= (q1, . . . , qc) are not
realizable.

We next identify planar networks for which stable fixed points of Eq. (2.2) necessarily have all
angle differences in [−π/2, π/2], meaning that N∗ =N. To that end, we recall a lemma by Taylor31

(a result very similar to this lemma can be found in Ref. 32).

Lemma 3.3 (Taylor31). Let {θ(0)
i } be a stable fixed point of Eq. (2.2) on a given graph G. Then

for any non-trivial partition VG =U ∪ Uc of the vertex set VG of G,∑
〈ij〉:

i∈U,j∈Uc

cos(θ(0)
i − θ

(0)
j ) ≥ 0 .

The following lemma characterizes network topologies which accept only stable fixed points
with angle differences in [−π/2, π/2] and for which the bound in Corollary 3.2 applies for the total
number N of stable fixed points. In networks where adjacent cycles share at least two consecutive
edges, as in the left panel of Fig. 1, all stable fixed points have all angle differences in the interval
[−π/2, π/2]. If, however, two cycles share a single edge only, as in the right panel of Fig. 1, some
stable fixed points may have angle differences larger than π/2.

Lemma 3.4. On a graph G where no pair of vertices with degree larger or equal to 3 are connected
by a single edge, all angle differences of any stable fixed point of Eq. (2.2) are in [−π/2, π/2].

Proof. First, according to Lemma 3.3, the two edges connected to a vertex of degree 2 cannot
both carry an angle difference whose cosines are negative. Thus in the left panel of Fig. 1, ∆ji and ∆ik

cannot be both larger than π/2. Without loss of generality, we assume ∆ji and ∆ik to be both positive,
otherwise we consider ∆ij and ∆ki instead. Now if ∆ji < π/2 <∆ik , according to Eq. (2.4),

sin(−∆ji) + sin(∆ik)= 0 ⇐⇒ ∆ik = π − ∆ji

=⇒ cos(∆ik)=− cos(∆ji)=:−c .

Consider the stability matrix M defined in Eq. (2.3). The principal minor of �M with row and column
indices j, i is

det

(
x − cos(∆ji)

− cos(∆ji) cos(∆ji) + cos(∆ik)

)
= det

(
x −c
−c 0

)
, (3.5)

which is negative. According to Sylvester’s criterion,34 M is not negative semidefinite, implying that
the fixed point is unstable. We conclude that a stable fixed point of Eq. (2.2) has all angle differences
in [−π/2, π/2]. �

Lemma 3.4 allows to apply Corollary 3.2 to a well-defined class of networks. The next corollary
gives a bound on the number of stable fixed points of Eq. (2.2) depending on the topology of the
network.

FIG. 1. Neighboring cycles sharing by two consecutive edges (left panel) and a single edge (right panel). In the left panel,
the angle differences ∆ji and ∆ik must both be in the interval [−π/2, π/2] for a fixed point solution to be stable. In the right
panel, however, the angle difference ∆ji may be larger than π/2.
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Corollary 3.5. On a planar graph G where no pair of vertices with degree larger or equal to
3 are connected by a single edge, the number N of stable fixed points of Eq. (2.2) is bounded from
above by

N ≤
c∏

k=1

[2 · Int (nk/4) + 1] . (3.6)

Corollary 3.5 covers a large class of networks. The bound (3.6) is valid for any planar network
with any number of cycles, as long as two cycles share either two or more edges, or no edge. When
two cycles share a single edge, as in the right panel of Fig. 1, we cannot identify a negative principal
minor of �M as in Eq. (3.5), which invalidates the proof for such network topologies. In Sec. IV,
we discuss some examples where the stability matrix M is negative semi-definite even though some
angle differences are larger than π/2, meaning that all principal minors of �M are non-negative. What
happens in these situations is that angle differences on edges e1, e2, e3, and e4 (see the right panel of
Fig. 1) may be small enough to stabilize an angle difference larger than π/2 on edge 〈ij〉.

IV. ANGLE DIFFERENCES EXCEEDING π/2

The results of Sec. III do not give a bound on the number of stable fixed points of Eq. (2.2)
for any planar network. There exist some examples of networks admitting a stable fixed point with
some angle differences larger than π/2. We discuss two such examples here. These networks have at
least one pair of cycles sharing only one edge and consequently they do not satisfy the hypothesis of
Lemma 3.4.

Example 1. Consider the network of Fig. 2 with K = 1, where the left path from A to B is of
length m1 = 15, the right path is of length m2 = 6, and the center path is of length m12 = 1. We checked
numerically that there exists a stable fixed point of Eq. (2.2) with one angle difference larger than
π/2. This fixed point has winding numbers q1 = �1 and q2 = 1, a large angle difference on the central
edge 〈AB〉, ∆AB ≈ π/2 + 0.149, and a negative Lyapunov exponent, λ2 ≈−0.0194.

Example 2. Consider now the triangular lattice shown in the left panel of Fig. 3 with K = 1.
The fixed point with winding number q = 1 on the central triangle has three angle differences of
2π/3, but we checked numerically that it is stable nevertheless, λ2 ≈−0.0974< 0. According to Refs.
16 and 18, the fixed point with a vortex flow on the 3-vertex network (top right panel of Fig. 3) is
unstable. The largest eigenvalue of its stability matrix can be analytically computed, λ2 = 1.5> 0.
In the triangular lattice, the structure of the network surrounding the central triangle stabilizes these
large angle differences, thanks to an increased connectivity. It should be noted however that increasing
the connectivity with only tree-like graph extensions is not enough. The hairy triangle shown on the
bottom right panel of Fig. 3 has a dynamics that is the same as the 3-vertex network of the top right
panel, λ2 ≈ 0.386> 0. It therefore cannot carry a vortex flow.

FIG. 2. Example of a network having a stable fixed point solution of Eq. (2.2) with one angle difference larger than π/2. The
number of edges along the three paths from A to B is m1 = 15, m2 = 6, and m12 = 1, and the coupling constant is K = 1. The
angle difference in the middle path is ∆AB ≈ π/2 + 0.149 for a stable fixed point solution with q1 = �1 and q2 = 1.
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FIG. 3. Left: Stable fixed point on a triangular lattice with three angle differences of 2π/3, here λ2 ≈−0.0974< 0. The red
arrows indicate the angle at each vertex and the green arrow indicates a vortex flow q = 1 on the central triangle. The lattice
shown is the smallest one we found numerically, which stabilizes this vortex flow. Top right: Fixed point on the triangular
network with winding number q = 1. This fixed point is unstable, λ2 = 1.5> 0, which agrees with the results of Refs. 16 and
18. Bottom right: Fixed point on the hairy triangle network with a vortex flow q = 1. Its dynamics is the same as the simple
triangle, λ2 ≈ 0.386, even if its vertices have higher degree. For all these three examples, K = 1.

V. CONCLUSION

Our investigations allowed to give an upper bound, Eq. (3.6), for the number of stable fixed point
solutions with angle differences in [−π/2, π/2], for the Kuramoto model with equal frequencies on
planar networks. This bound is algebraic in the number of nodes on each cycle of the network, which
is a very significant improvement in earlier bounds which were exponential in the number of nodes,
for all fixed point solutions (stable and unstable).10,11

The structure of Eq. (3.6) identifies two opposite tendencies determining N. On one hand more
cycles means more terms in the product, which would suggest a larger number of stable fixed points.
Furthermore, having more cycles increases the possibility to have two cycles sharing a unique edge,
which allows larger angle differences and possibly more stable fixed points. On the other hand, more
cycles for a fixed number of vertices implies shorter cycles, and according to Eq. (3.6) again, this
suggests less stable fixed points. The number of stable fixed points is then a trade-off between these
two tendencies. This trade-off can be illustrated by considering the average number 〈N〉 of stable
fixed points of Eq. (2.2), taken over all the networks with n vertices and c cycles. For c = 0, all graph
realizations are trees, which have a unique stable fixed point solution. For c = 1, we already know that
the average number of stable fixed points will increase and be bounded by 2 · Int [n/4] + 1.16 But, as
c increases further, the average number of stable fixed points will start to decrease at some point, to
finally reach a unique stable fixed point for the all-to-all Kuramoto model.8,9 We can then expect 〈N〉
to increase for c < c∗ and decrease for c > c∗ with some critical value c∗ ∈ {0, . . . , (n − 1)(n − 2)/2}.
A non-monotonous behavior of the average 〈N〉 with respect to c has been reported numerically by
Mehta et al.10

Equal frequencies correspond to the K→∞ limit of the Kuramoto model, Eq. (2.1), and it is an
open question whether our upper bound, Eq. (3.6), remains valid upon reducing K, when the spectrum
of natural frequencies Pi influences the fixed points. In Ref. 16, we managed to show that any stable
fixed point solution at a given value of K remains stable upon increasing K for a single-cycle network,
meaning conversely that new stable fixed point solutions do not appear as K is reduced. While we
expect the same to hold for any network, we have been unable so far to rigorously extend the argument
of Ref. 16 beyond single-cycle networks. We expect Eq. (3.6) to be an upper bound for any K, but
have not been able to rigorously prove it.

We showed the bound (3.6) to be valid for planar networks. Our approach is valid for any
network topology until Theorem 3.1, which only applies to planar networks. All later results cannot
be applied directly to general network topologies. Furthermore, our derivation of Eq. (3.6) is valid
under the assumption that all stable fixed point solutions have angle differences |∆e | ≤ π/2 on all
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edges e of the network. In Section IV we identified topological ingredients that allow stable fixed
point solutions to violate that condition. We found that networks with either no or strictly more than
one edge common to any two cycles carry stable fixed point solutions with only |∆e | ≤ π/2; therefore,
Eq. (3.6) holds for the number of stable fixed points on such graphs. For graphs with edges single-
shared by two cycles, the winding number on one such cycle is bounded from above by

|2πqk | ≤ (nk − n′k)π/2 + n′kπ,

with n′k counting the number of edges on the kth cycle single-shared with another cycle (as in the
right panel of Fig. 1) and for which an angle difference larger than π/2 does not necessarily lead to
instability. We therefore conjecture the following upper bound for the number of stable fixed points
on generic planar networks:

N ≤
c∏

k=1

[
2 · Int

(
(nk + n′k)/4

)
+ 1

]
. (5.1)

In trying to rigorously confirm this bound, we could not prove the one-to-one correspondence between
fixed point solutions and vortex flow vectors when |∆e | > π/2 for some edges. Eq. (5.1) is therefore
a conjecture which we could not disprove numerically, but have yet to prove rigorously.

We finally point out that the approach based on vortex flows we constructed is equivalent, in
quantum-mechanical language, to rewriting the problem in a basis with good angular momentum
quantum number {`k } for each fundamental cycle. Given the knowledge of all admissible values
for each `k , it is then possible to construct initial states with higher chances to converge towards
fixed point solutions with finite winding vector ~q. A numerical algorithm to determine all possible
stable fixed point solutions in complex planar networks has been constructed and will be presented
elsewhere.

After completion of this manuscript, we heard of Ref. 35, which reproduces several of our results.
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