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ABSTRACT

The Kuramoto model with high-order coupling has recently attracted some attention in the �eld of coupled oscillators in order, for instance,
to describe clustering phenomena in sets of coupled agents. Instead of considering interactions given directly by the sine of oscillators’ angle
di�erences, the interaction is given by the sum of sines of integer multiples of these angle di�erences. This can be interpreted as a Fourier
decomposition of a general 2π-periodic interaction function. We show that in the case where only one multiple of the angle di�erences is
considered, which we refer to as the “Kuramoto model with simple qth-order coupling,” the system is dynamically equivalent to the original
Kuramoto model. In other words, any property of the Kuramoto model with simple higher-order coupling can be recovered from the standard
Kuramoto model.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5118941

Along the last few decades, the Kuramoto model has attracted a
lot of interest in the �eld of synchronization of coupled oscilla-
tors. Its simple formulation and the variety of synchronization
phenomena that it describes make it a good candidate to inves-
tigate such phenomena both numerically and analytically. The
sinusoidal interaction in the Kuramoto model can be seen as the
�rst order of the Fourier decomposition of a general coupling
function. It is then natural to extend the coupling to higher orders,
such that the dynamics depend on the sines of multiples of the
angle di�erences. In this paper, we show that considering only the
angle di�erence or a unique integermultiple of it in the sinusoidal
coupling is qualitatively equivalent.

I. INTRODUCTION

In the context of synchronization of coupled dynamical sys-
tems, the Kuramoto model1,2 has drawn much attention within the
last few decades.3–5 Synchrony is observed in many real systems,
ranging from the brain’s oscillatory pacemaker cells establishing
the circadian rhythm6 to synchronous machines connected to the
high-voltage AC electrical grid.7,8 This popularity brought the topic
to a point where the remaining open questions are both hard and
poorly rewarding to answer. To describemore realistic systems, some
generalized versions of the Kuramoto model have been considered,
for instance, meshed interaction graphs, higher-order dynamics,8 or

directed interactions.9,10 One of these generalizations is to consider
higher-order couplings.11–18 While the Kuramoto model is de�ned as

θ̇i = ωi −
K

n

n
∑

j=1

sin(θi − θj) (1.1)

for i ∈ {1, . . . , n}, where θi ∈ R is the ith oscillator’s angle, ωi ∈ R

is its natural frequency, and K > 0 is the coupling strength, the
Kuramoto model with qth-order coupling, for q ∈ Z>0, is de�ned as

θ̇i = ωi −

n
∑

j=1

q
∑

`=1

K`

n
sin

[

` · (θi − θj)
]

(1.2)

for i ∈ {1, . . . , n}. The sum over ` can be seen as a truncated Fourier
decomposition of a general 2π-periodic coupling function.

To this day, most of the works about this version of the
model have been limited to second-order couplings (K1,2 6= 0), which
already exhibits behaviors signi�cantly di�erent from the original
Kuramoto model.14–17 While most descriptions of the synchronous
states of this model, for q = 2 and large n, have been performed
numerically,15,16 an analytical approach, based on a self-consistency
equation for the order parameters of the system, is given in Ref. 14.
The Kuramoto model with qth-order coupling has been used to
describe clustering phenomena in systems of coupled synchro-
nized oscillators. Clustered synchronous states of some particular
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versions of the Kuramoto model with second-order coupling and
their dynamics are described in Refs. 11 and 12.

When one of the coupling orders largely dominates the others,
a simplifying assumption is to consider the case where K` = 0 for all
` 6= q, which we refer to as the Kuramoto model with simple qth-
order coupling.13,18 In this case, Eq. (1.2) reduces to

θ̇i = ωi −
K

n

n
∑

j=1

sin
[

q · (θi − θj)
]

(1.3)

for i ∈ {1, . . . , n}, which is the dynamical system considered in this
paper. Note that the Kuramoto model, Eq. (1.1), can be seen as
the Kuramoto model with simple �rst-order coupling. An analytical
description of the transient dynamics of Eq. (1.3) and its synchronous
clustered states is given in Ref. 13.

In this paper, we show that the dynamical systems described
by Eqs. (1.1) and (1.3) are qualitatively equivalent, in the sense that
both have the same dynamical properties (�xed points, linear sta-
bility, basin stability, order parameter) up to a projection from the
state space to itself. Doing so, we make rigorous the claim below
Eq. (3) in Ref. 15 that “In the case withK1 = 0 (orK2 = 0), themodel
is reduced to the original [Kuramoto model]. . ..” It also explains
the striking similarity between Fig. 2 in Ref. 18 (the Kuramoto
model with simple second-order coupling) and Fig. 2 in Ref. 19 (the
Kuramoto model with simple �rst-order coupling). In Sec. II, we see
that a direct relation can be drawn between the two models, allow-
ing to translate any property of one model to the other. Therefore, a
thorough investigation of theKuramotomodel with simple qth-order
coupling is not needed, as any of its properties can be derived from
properties of the original Kuramotomodel. A selection of such prop-
erties and some implications for potential applications are detailed in
Sec. III.

Remark. In Eq. (1.3), we consider all-to-all coupling, and we
will do so for the whole paper for the sake of readability. Nevertheless,
our results can be straightforwardly extended to any coupling graph.
We comment on this at the end of Sec. III.

II. DYNAMICAL EQUIVALENCE

The Kuramoto model is usually considered a dynamical system
on the torusT

n. We consider the variables θi as elements of S1, which
we parametrize as [0, 2π) with periodic boundary conditions. We
show now that the following two dynamical systems:

θ̇i = qωi −
qK

n

n
∑

j=1

sin
(

θi − θj
)

, (2.1)

θ̇i = ωi −
K

n

n
∑

j=1

sin
[

q · (θi − θj)
]

, (2.2)

describe the samedynamics, up to rescaling the variables θi by a factor
q. The rescaling is performed by the covering map from T

n to itself,
which we de�ne parametrically as

πq : T
n −→ T

n,

(θ1, . . . , θn) 7−→ (qθ1, . . . , qθn) mod 2π ,
(2.3)

where the modulo is applied elementwise.

More formally, we show below that πq sends any solution of
Eq. (2.2) to a solution of Eq. (2.1) and that any lift of a solution of
Eq. (2.1) through πq is a solution of Eq. (2.2). As πq is a smooth cov-
ering map, all properties of a solution of Eq. (2.2) are preserved in its
projection [and similarly for the lift of a solution of Eq. (2.1)]. This is
what we mean by “dynamical equivalence.”

A. Projecting

Let 2ψ∗ : R → T
n be the solution of Eq. (2.2) with initial con-

ditions ψ∗. We verify that the projection πq2ψ∗(t) solves Eq. (2.1),

d

dt
πq2ψ∗ = qωi −

qK

n

n
∑

j=1

sin
[

q
(

2ψ∗ ,i − 2ψ∗ ,j

)]

(2.4)

= qωi −
qK

n

n
∑

j=1

sin
(

πq2ψ∗ ,i − πq2ψ∗ ,j

)

, (2.5)

with initial conditions πq2ψ∗(0) = qψ∗.

B. Lifting up

The other way is a bit more intricate because there are mul-
tiple preimages through π−1

q for each element of T
n. Let 8η∗ :

R → T
n be the solution of Eq. (2.1) with initial conditions η∗ ∈ T

n.
The preimage π−1

q η∗ is a set of qn points, one of them being q−1η∗ ∈

[0, 2π/q)n ⊂ T
n, whose ith component is ηi/q. The other q

n − 1 can
be constructed as

q−1η∗ +
2π

q
ρ, (2.6)

with ρ ∈ {0, 1, . . . , q − 1}n. Each one of these points can be chosen
as a starting point for the lifting.

Now, whichever element ψ∗ ∈ π−1
q η∗ we choose as starting

point for the lifting, there is a unique smooth lifting π−1
q 8η∗(t) of

the trajectory 8η∗(t) satisfying the following two properties:

(i) π−1
q 8η∗(0) = ψ∗,

(ii) πq

[

π−1
q 8η∗(t)

]

= 8η∗(t), for all t ∈ R.

The time derivative of the ith component of this lifting is

d

dt

(

π−1
q 8η∗

)

i
= q−18̇η∗ ,i (2.7)

= q−1



qωi −
qK

n

n
∑

j=1

sin
(

8η∗ ,i − 8η∗ ,j

)



 (2.8)

= ωi −
K

n

n
∑

j=1

sin
[

q
(

π−1
q 8η∗ ,i − π−1

q 8η∗ ,j

)]

.

(2.9)

The lifting then solves Eq. (2.2) with initial conditionsψ∗, and this is
true independently of the choice of representative ψ∗ ∈ π−1

q η∗. The

preimage, by π−1
q , of a solution 8η∗ of Eq. (2.1) is then a set of solu-

tions of Eq. (2.2) di�ering from one another by a shift 2πρ/q, with
ρ ∈ {0, 1, . . . , q − 1}n.
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C. Dynamical equivalence

It is now clear that

πq

(

π−1
q 8η∗

)

= 8η∗ , (2.10)

and the unique smooth lifting of πq2ψ∗ such that π−1
q

(

πq2ψ∗

)

(0)

= ψ∗ is exactly

π−1
q

(

πq2ψ∗

)

= 2ψ∗ . (2.11)

Properties of the solutions are then preserved by the projection πq as
well as by its corresponding lifting.We verify this for some dynamical
properties in Sec. III.

III. CONSEQUENCES ON CLUSTERING

Now that we established the dynamical equivalence between the
Kuramoto model with simple �rst- and higher-order coupling, we
review some results known for the original Kuramoto model and
translate them in the Kuramoto model with qth-order coupling, in
order to derive some results about clustering in the latter.

A. Fixed points

A given �xed point of the original Kuramoto model corre-
sponds to qn �xed points of the Kuramoto model with qth-order
coupling. Each of these �xed points di�ers by a shift 2πρ/q,
with ρ ∈ {0, 1, . . . , q − 1}n. When the natural frequencies are small
(ωi � K/n), the synchronous state θ∗ ∈ [0, 2π)n of Eq. (2.1) is such
that all angles are close to each other. For any ρ ∈ {0, 1, . . . , q − 1}n,
the point 2πρ/q ∈ [0, 2π)n is a synchronous state for Eq. (2.2). The
integer vector ρ describes the “clustering pattern” of the correspond-
ing synchronous state. If ρi = ρj, oscillators i and j are close to each
other (at least for rather small natural frequencies) and approximately
2π/q apart from an oscillator k such that ρk = ρi ± 1. Then, each
oscillators with the same value in ρ form a cluster. The number of

di�erent values in ρ gives the total number of clusters in the syn-
chronous state under consideration. From the point of view of the
dynamics, however, the clustering pattern has no e�ect. The 2π/q
shifts introduced by the vector ρ leave Eq. (2.2) unchanged. The
only information that is lost between the qth- and �rst-order cou-
pling Kuramoto models is the clustering pattern. However, this is
only a combinatorial problem that can be addressed independently
of dynamical considerations. In Fig. 1, for instance, each color corre-
sponds to a di�erent clustering pattern. At the end of the trajectory,
the orange line has �ve oscillators in one cluster ({1, 2, 3, 4, 6}), with
angles in [0,π) and oscillator 5 forming a cluster by itself, with its
angle in [π , 2π). Similarly, for the green line, oscillators 1 and 3 are
in one cluster with angles in [0,π) and the others are in the cluster
with angles in [π , 2π).

B. Linear stability

One can verify that the linear stability of Eq. (2.2) at a �xed point
θ∗ is identical to the linear stability of Eq. (2.1) at πqθ

∗. More pre-
cisely, the Jacobian matrices Jq(θ

∗) of Eq. (2.2) at θ∗ and J1(πqθ
∗)

of Eq. (2.1) at πqθ
∗ are equal. Thus, for a given distribution of nat-

ural frequencies, all clustered states have the same linear stability
properties.

C. Order parameter

The order parameter r1 is a quantity describing the level of
coherence between oscillators’ angles in the Kuramoto model. It
has been a major ingredient to analyze synchronization in this
model.1,20–22 To take clustering into account, in the Kuramoto model
with higher-order coupling, it has been generalized13 to the qth order
parameter,

rq(θ) : =
1

n

∣

∣

∣

∣

∣

∣

n
∑

j=1

eiqθj

∣

∣

∣

∣

∣

∣

. (3.1)

FIG. 1. Example of the trajectories of the dynamical systems Eq. (2.1) (blue) and Eq. (2.2) (orange, green, red, and purple), with n = 6 and q = 2. Boundary
conditions are periodic. Initial conditions were, respectively, ψ∗ ∈ [0, 2π/q)n (orange, taken randomly), ψ∗ + (π , 0,π , 0,π , 0) (red), ψ∗ + (0,π , 0,π , 0,π) (green),
ψ∗ + (π ,π ,π ,π ,π ,π) (purple), and qψ∗ (blue). The black dashed line is obtained by dividing all angles of the solution of Eq. (2.1) (blue) by q. The arrow shows the
direction of the time evolution. The solutions of Eq. (2.2) are simply translations of each other, and the solution of (2.1) is a homogeneous dilatation of factor q of the others.
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It directly translates from the Kuramotomodel with simple qth-order
coupling to its equivalent Kuramotomodel with �rst-order coupling.
Namely, the order parameter rq(θ

∗) is equal to r1(πqθ
∗). A large qth

order parameter rq indicates that the current state of Eq. (2.2) is clus-
tered but does not give any information about the clustering pattern
because it is blind to any angle shift of 2π/q. The order parameter
rq takes the same value r = r1(ψ

∗) for each element of the preimage
π−1
q ψ∗.

More generally, rp ≈ 1 for 1 ≤ p ≤ q indicates that the system is
clustered in p equidistance clusters. Furthermore, if rp ≈ 1, it implies
that rkp ≈ 1 for any k ∈ N. Looking at all the order parameters with
1 ≤ p ≤ q can give more information about the clustering pattern.
For instance, in the special case where q = 2, if r2 = 1, then one
can verify that the number of oscillators in each cluster n1 and n2,
respectively, are given by

n1 =
(1 + r1)n

2
, n2 =

(1 − r1)n

2
. (3.2)

In more general cases, however, it is not possible, as far as we can tell,
to determine the number of oscillators in each cluster only based on
the order parameters.

D. Synchronization

It is known23 for the Kuramoto model, Eq. (2.1), that if the cou-
pling is su�ciently large to grant the existence of a synchronous state
[K > maxi,j(ωi − ωj)], then there exists a value γmax ∈ (π/2,π] such
that the system synchronizes if all initial angles are in an arc of length
atmost γmax. In the Kuramotomodel with simple qth-order coupling,
this translates as follows. First, for the same value of K, the system
synchronizes to the single cluster �xed point if all initial angles are
in an arc of length γmax/q. Second, if the initial conditions ψ∗ are
such that all angles ofψ∗ − 2πρ∗/q are contained in an arc of length
γmax/q, then the system synchronizes to the state with clusters given
by ρ∗ ∈ {0, 1, . . . , q − 1}n.

E. Basins of attraction

By equivalence of the dynamics, the basin of attraction of �xed
point θ∗ of Eq. (2.2) is a copy of the basin of attraction of the �xed
point πqθ

∗ of Eq. (2.1), rescaled by a factor q−1. Namely, its volume is
q−n times the volume of the basin of attraction of πqθ

∗. We illustrate
this in Fig. 2, where we show the basins of attraction for the systems
(2.1) (left panel) and (2.2) (right panel).

F. Basin escape

Suppose we introduce an additive noise in Eq. (2.2) to account
for unpredictable perturbation of the environment. This will eventu-
ally lead our system to jump from a synchronous state to another.24,25

For theKuramotomodel, Eq. (2.1), such jumps bring the system from
a synchronous state to a translate of itself, where some angles slip and
accumulate integer multiples of 2π . Lifting up such a trajectory to
the Kuramotomodel with simple qth-order coupling, the jumps then
occur between the basins of attraction of di�erent clustered states,
where some angles accumulate an integer multiple of 2π/q. Additive
noise in Eq. (2.2) is then a possible mechanism for cluster formation.

FIG. 2. Basins of attraction of various synchronous states of Eq. (2.1) (left panel)
and Eq. (2.2) (right panel) with n = 3, q = 3, and identical natural frequencies
(ωi ≡ 0). The angle θ3 was fixed at 0, to remove the degree of freedom corre-
sponding to the constant angle shift. Each figure is composed of 10 000 random
initial conditions, and the color of each cross depends on the state to which it syn-
chronizes. For the Kuramoto model, Eq. (2.1), all initial conditions converge to the
same synchronous state (black dot, left panel), the colors only indicate if some
angles accumulated amultiple of 2π due to the dynamics. For the Kuramotomodel
with simple qth-order coupling, Eq. (2.2), there are nine different synchronous
states (black dots, right panel), with different clustering patterns, and the other
basins correspond to translations of these nine basins. This illustrates that the
basins of Eq. (2.2) are a copy of those of Eq. (2.1) rescaled by a factor 1/3.

If the noise has su�ciently small amplitude, the system remains
for a long time in a neighborhood of a synchronous state, until
the noise generates a sequence of perturbations that make it jump
to another synchronous state. As pointed out by previous research
on the Kuramoto model,24,26 the expected time between two jumps
is exponential in (i) the inverse of the natural frequencies’ distri-
bution width and (ii) the potential di�erence between the initial
synchronous states and the closest 1-saddle. It can also be related to
(iii) the distance (in the state space) between the stable synchronous
state and the closest 1-saddle.25 By the equivalence derived in Sec. II,
the expected time between jumps froma clustering pattern to another
then follows the same exponential dependence (i)–(iii).

The equivalence is clearly seen in Fig. 3, where the angle trajec-
tories in the two systems seem to be rescaled copies of each other,
while they are obtained by two di�erent simulations. The di�erence
being that in the original Kuramoto model, the system jumps from
the unique synchronous state to itself, by periodicity of the phase
space, while in the Kuramoto model with qth-order coupling, the
jumps occur between di�erent clustered states.

G. Information storage

It has been acknowledged27,28 that the dynamics of some real-
world systems can be described rather accurately by Eq. (2.2). In
particular, it was proposed that such systems could be used as infor-
mation storage,13,29where the value of each lower order parameter is a
piece of information. Reference 13 de�nes a forcing that allows deter-
mining the clustered state to which the system synchronizes and thus
to control the value of rp for 1 ≤ p < q. In this scope, the dynamical
equivalence shown in Sec. II indicates that the stability properties of
the system do not depend on its states. This is of major importance
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FIG. 3. Time evolution of the angles in the Kuramoto model (top panel) and the Kuramoto model with simple 6th-order coupling (bottom panel) with n = 6, both subject
to additive white noise. Initial conditions are (0, . . . , 0) for both systems, natural frequencies are identically zero, and the coupling is K1 = 1 and K6 = 1/6, respectively.
The noise sequences are the same, with amplitude divided by 6 for the Kuramoto model with 6th-order coupling. The black dashed lines indicate the multiple of 2π , i.e., the
limits of the periodic boundary conditions. After each jump in the Kuramoto model, the system converges back to its initial conditions, whereas with 6th-order coupling, the
Kuramoto model converges to a clustered state, even if the trajectories are qualitatively the same, this is only due to the different coupling functions.

for such an application as it guarantees that the reliability of the stor-
age system does not depend on the information it contains, which
would render such an application much more complicated.

H. Generalization

More generally, instead of nonoriented, homogeneous, all-to-all
couplings, our argument can be straightforwardly extended to the
Kuramoto model with interactions given by any graph, weighted or
not, directed or not.Our argument also shows dynamical equivalence
between the following two, more general versions of the Kuramoto
model with higher-order coupling:

θ̇i = ωi −

n
∑

j=1

q
∑

`=1

K`

n
sin

[

`p · (θi − θj)
]

, (3.3)

θ̇i = pωi −

n
∑

j=1

q
∑

`=1

pK`

n
sin

[

` · (θi − θj)
]

(3.4)

for i ∈ {1, . . . , n} and p ∈ Z>0.

IV. CONCLUSION

The main consequence of the dynamical equivalence presented
in this paper is that any property of the original Kuramoto model,
Eq. (2.1), can be lifted to the Kuramoto model with simple qth-order
coupling, Eq. (2.2). The only discrepancy is the multiplicity of the
elements of the lifting from Eq. (2.2) to Eq. (2.1).

To summarize, we showed that the Kuramoto model with �rst-
order coupling is dynamically equivalent to the Kuramoto model
with simple qth-order coupling. As a matter of fact, any dynamical

property of the latter can be derived from the corresponding prop-
erty of the original Kuramoto model. The behavior of the Kuramoto
model with higher-order coupling qualitatively changes only if at
least two di�erent coupling orders are considered. Clustering occurs
in the Kuramoto model with simple qth-order coupling because of
the choice of coupling function. However, the dynamics are blind
to the clustering pattern as each synchronous state is dynamically
equivalent.

To take into account clustered states whose characteristics (lin-
ear stability, basin shape, size, etc.) di�er, other models should be
used. Some promising examples are, for instance, the more gen-
eral Kuramoto model with qth-order coupling [Eq. (1.2)] or some
dynamical systems with bounded con�dence.30
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