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We investigate species-rich mathematical models of ecosystems. Much of the existing literature
focuses on the properties of equilibrium fixed points, in particular their stability and feasibility. Here
we emphasize the emergence of limit cycles following Hopf bifurcations tuned by the variability of
interspecies interaction. As the variability increases, and owing to the large dimensionality of the
system, limit cycles typically acquire a growing spectrum of frequencies. This often leads to the
appearance of strange attractors, with a chaotic dynamics of species abundances characterized by a
positive Lyapunov exponent. We find that limit cycles and strange attractors preserve biodiversity
as they maintain dynamical stability without species extinction. We give numerical evidences that
this route to chaos dominates in ecosystems with strong enough interactions and where predator-
prey behavior dominates over competition and mutualism. Based on arguments from random matrix
theory, we further conjecture that this scenario is generic in ecosystems with large number of species,
and identify the key parameters driving it. Overall, our work proposes a unifying framework, where
a wide range of population dynamics emerge from a single model.

Introduction. One of the main challenges in theoreti-
cal ecology is to connect predictions from mathematical
models of population dynamics to empirical observations
of species coexistence in natural or laboratory-controlled
ecosystems [1]. It is established that individual popula-
tions fluctuate in time, often with large qualitative and
quantitative differences between species [2–5]. In some
instances, population abundances exhibit synchronized,
periodic oscillations, while in others population dynam-
ics appears chaotic [6–13]. It is highly desirable to find
out whether the wide range of observed dynamics can be
captured by varying few parameters of a unifying math-
ematical model, and if yes, what are the key characteris-
tics this model should retain. Investigating mathematical
models can furthermore shed light on fundamental quali-
tative questions such as whether populations fluctuations
are endogenous or exogenous, i.e., if they are generated
by intrinsic interactions or by external sources [7, 14].

In this letter, we numerically investigate large Lotka-
Volterra models with random interactions, which are
standard multi-species models of population dynamics.
We emphasize the richness of their dynamics as a func-
tion of two key parameters which are (i) the vari-
ability σ in interspecies interactions, and (ii) the off-
diagonal covariance parameter γ of the interaction ma-
trix. Our main finding is that, for sufficiently large ratio
of predator-prey pairs of species, the stable fixed-points
prevailing at weak interaction variability generically lose
their stability through Hopf bifurcations. Limit cycles
emerge, where surviving species have periodically oscil-
lating abundances. At still stronger interactions, strange
attractors appear, possibly from cascades of bifurcations,
which lead to a chaotic dynamics of population abun-
dances characterized by a positive largest Lyapunov ex-
ponent. This route to chaos illustrates how stationar-

ity, oscillating periodicity and chaos in the dynamics of
species abundances exist in rather general models of pop-
ulation dynamics, depending on σ and γ. One important
result is that all observed population dynamics in multi-
species ecosystems can be reproduced by a unified math-
ematical model.

Much of theoretical ecology is based on the surmise
that the observed states and dynamics of ecosystems can
be described by the time-asymptotic behavior of math-
ematical models. Accordingly, there has been a signifi-
cant focus on the equilibrium fixed points of large sys-
tems of competing species, their stability and feasibil-
ity [15–22] One key parameter is the variability σ of
the interspecies interaction. It has been found that a
unique, asymptotically stable fixed point exists at weak
enough σ < σc [15, 17, 21, 22], and that σc increases
in ecosystems with dominating predator-prey interac-
tions [18, 19]. For σ > σc, one enters a phase with multi-
ple unstable equilibria [22]. Stabilization may still occur
via species extinction, which drives the ecosystem to a
novel, stable fixed point with reduced biodiversity. Be-
yond fixed points, the emergence of limit cycles through
Hopf bifurcation has been emphasized, albeit for small
systems with only few species [23–27]. Further regimes
with aperiodic persistent dynamics have recently been
highlighted at stronger interactions and/or larger num-
ber of species [28], in ecosystems with sparse interac-
tions [29, 30] or communities with migrations [31]. In
contrast to this mainstream philosophy focusing on the
time-asymptotic behavior of mathematical models, sev-
eral works have advocated that sufficiently large ecosys-
tems have long relaxation times so that, by nature, they
are in a transient state [32–35]. Such large relaxation
times may follow from the slowing down of the dynam-
ics in ecosystems close to criticality [36, 37]. Below we
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show that all these different behaviors naturally emerge
in different regimes of a single mathematical model, as a
function of only two parameters.

Model and method. Population dynamics in multi-
species ecosystems is commonly studied in the framework
of the generalized Lotka-Volterra model [38]

Ṅi = Ni

κi −Ni −
µ

S

S∑
j=1

Nj −
σ√
S

S∑
j=1

AijNj

 . (1)

Eq. (1) determines the time-evolution of the normalized
abundance Ni(t) ≥ 0 of species i = 1, 2, . . . S, as a
function of its intrinsic growth rate κi and its interac-
tion with other species. Interactions have a finite aver-
age µ and a variability σ. Fluctuations in interaction
strengths between pairs of species are encoded in the
components Aij of the interaction matrix A. Being inter-
ested in large, heterogeneous ecosystems with no particu-
lar structure, we follow a random matrix theory (RMT)
approach [15, 39, 40] and take Aij to be normally dis-
tributed with vanishing average and covariances given
by

⟨AijAkl⟩ = δikδjl + γδilδjk . (2)

The off-diagonal covariance parameter γ ∈ [−1, 1] tunes
from competitive or mutualistic pairs of species (γ = 1;
where the spectrum of A is real) to only predator-prey
pairs of species (γ = −1; ; where the spectrum is purely
imaginary) [41]. For γ = 0, A belongs to the Ginibre
ensemble or random matrices [42].

The generalized Lotka-Volterra model of Eq. (1) as-
sumes that Ni(t) is real and varies continuously. This is a
legitimate assumption only as long as Ni(t) is sufficiently
large. Large fluctuations have been observed in numeri-
cal simulations of Eq. (1), where some species resurrect
from minuscule abundances, effectively corresponding to
extinction. As a matter of fact, the dynamics of Eq. (1)
leads to species extinction only for asymptotically long
times, and the standard procedure to solve this atto-fox
problem [43] is to introduce a small, but finite extinc-
tion threshold Nc. When Ni(tc) < Nc, extinction occurs
and Ni(t > tc) ≡ 0. We will set Nc = 10−20 but have
checked that other choices lead to the same conclusions
as presented below. Our focus is on the parameters σ
and γ defining the variability of the interspecies interac-
tions and accordingly we fix the growth rates, the initial
number of species and the average interaction at values
κi ≡ 1, S = 157 and µ = 5. We have checked that vary-
ing µ does not change our conclusions as long as µ > 0.

The RMT approach to ecosystem dynamics dates back
at least to May’s seminal work [15]. Fixed-points N⃗∗ of
Eq. (1) are defined by Ṅ∗

i = 0 and the dynamics in their
vicinity is governed by the stability matrix M

δ
˙⃗
N = M δN⃗ , (3a)

Mij = −N∗
i (δij + µ/S + σAij/

√
S) . (3b)
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Figure 1. Top: abundances for 8 of the Ns = 61 surviving
species oscillating in a limit cycle for a realization of the model
of Eq. (1), with σ = 4.05 and γ = −0.5. Bottom: Evolution of
the eigenvalues of the stability matrix M for σ ∈ [0, 4.02] (more
faded colors indicate smaller values of σ). Stability of the fixed
point is lost when a pair of complex-conjugated eigenvalues
cross the imaginary axis, resulting in a Hopf bifurcation and
the emergence of the limit cycle shown in the top panel.

The fixed-point is stable as long as the spectrum of M
lies entirely in the left half of the complex plane. The
average density of eigenvalues of A is distributed within
a zero-centred ellipse in the complex plane with semi-axes
σ(1 + γ) [σ(1− γ)] in the real [imaginary] direction [44].
The ellipse is shifted to the left by the identity matrix [the
Kronecker symbol in Eq. (3b)], while the constant µ-term
in Eq. (3b) adds an outlier eigenvalue −µ [21]. Assuming
an homogeneous distribution of populations, N∗

i ≃ N0 =
O(1), the fixed-point is parametrically stable for σ < (1+
γ)−1. Beyond that border, fixed-point stability may be
recovered via species extinctions, N∗

i → 0, except for
a number Ns < S of surviving species, because then,
the stability matrix A

(r) is reduced by removing rows
and lines from A, corresponding to the extinct species.
Then, the spectrum of A(r) has an elliptic support with
semi-axes σ(1 ± γ)

√
Ns/S. Stability then bounds the

number of surviving species Ns/S ≤ [σ(1 + γ)]−2. Note
that this argument says nothing about the bifurcation
through which fixed-points lose stability.

Results. For γ ̸= 1 the eigenvalues of the real, asym-
metric matrix M are either real, or come in complex-
conjugated pairs. This opens up the possibility that the
fixed-point loses its stability through a Hopf bifurcation,
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Figure 2. Emergence of a limit cycle and transition to chaos
for the model of Eq. (1), with γ = −0.5. The time-evolution
of the species abundance N33 is plotted for (a) σ = 2.5, (b)
σ = 2.6, (c) σ = 2.8, (d) σ = 2.85, and (e) σ = 3.19. Panel
(f) shows the numerically computed largest Lyapunov expo-
nent λ, with green crosses corresponding to the cases shown
in panels (a-e). In panel (d) and (e), two initially nearby
sets of abundances diverge from one another (black and red
curves), reflecting the corresponding positive λ. Different tra-
jectories repeat similar patterns, albeit in different sequences
and without periodicity. Together with λ > 0, this is char-
acteristic of the presence of a strange attractor. There is no
such sensitivity to initial conditions in the three other cases,
where λ < 0 when the dynamics is attracted to a fixed point
[as in panel (a)], and λ = 0 (grey area) in the presence of a
limit cycle [as in panels (b) and (c)].

after which the ecosystem dynamics is attracted to a sta-
ble limit cycle. Such a Hopf bifurcation is illustrated in
Fig. 1, where the top panel shows periodic oscillations in
abundances of the surviving species which are related in
the bottom panel to the crossing of the imaginary axis
by a complex-conjugated pair of eigenvalues. For large
random matrices with γ = 0 it has been shown that only
O(

√
S) of the S eigenvalues are real [45–47], which sug-

gests that such Hopf bifurcations are the rule rather than
the exception in ecosystems with high biodiversity.

Directly following the bifurcation, cycles exhibit sinu-
soidal oscillations with a single frequency, determined by
the imaginary part of the pair of involved eigenvalues.
More harmonics emerge as σ increases further, until the
cycle disappears. Cycle disapearance can happen be-
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Figure 3. Distribution of the number of surviving species
for the model of Eq. (1), with σ = 2, γ = 0 (left) and σ = 4,
γ = −0.5 (right). Black histograms correspond to fixed point
solutions and red histograms to limit cycle solutions. Distri-
butions are calculated over 400 realizations of the interaction
matrix Aij , each with 25 different initial abundances. In all
considered cases, the system converges to either a fixed point
or a limit cycle. Distributions correspond to 22.5% (left panel)
and 47.6 % of cycles (right panel).

cause the cycle loses either its stability – for instance
through an inverse Hopf bifurcation – or its feasibility –
for instance because one or several species reach the ex-
tinction threshold Nc somewhere along the cycle. The
dynamics of a single-species as σ passes through and
keeps increasing beyond a Hopf bifurcation is shown in
Fig. 2. It illustrates a third mechanism by which a pe-
riodic cycle turns into a strange attractor. To quantify
this transition to chaos, we numerically calculated the
largest Lyapunov exponent λ [48]. As expected, λ < 0 in
the fixed-point regime, σ ≲ 2.59. Following the Hopf bi-
furcation, λ = 0 as long as the limit cycle remains stable
[panels (b) and (c)], which corresponds to the dynamics
in the direction tangential to the cycle. Upon further in-
crease of σ, λ > 0 as one enters the chaotic regime, with
a population dynamics governed by a strange attractor.
The black and red trajectories in panels (d) and (e) il-
lustrate the associated sensitivity to initial conditions,
where population trajectories repeat similar-looking pat-
terns, albeit at irregular time intervals and following se-
quences depending strongly on initial conditions. We
stress that the abrupt fluctuations exhibited by λ in both
the fixed-point and the strange attractor regimes reflect
fast dynamical changes with σ. Numerical error bars in
panel (f) of Fig. 2 are smaller than symbol sizes, in partic-
ular, |λ| ≲ 10−5 in the limit cycle regime 2.59 ≲ λ ≲ 2.82
(grey area in Fig. 2).

The occurence of Hopf bifurcations is of central im-
portance for theoretical ecology. It extends the stability
of population coexistence beyond the loss of fixed-point
stability, without the need for species extinction. The re-
sulting increasing biodiversity is illustrated in Fig. 3. It
is obvious that the average number of coexisting species
at fixed σ is higher for ecosystems equilibrating to limit
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Figure 4. Probability to find the system in a state of per-
sistent dynamics – either a limit cycle or a state of chaotic
dynamics on a strange attractor – as a function of γ, and for
σ = 1.5 [Panel(a)], 2 [(b)], 3 [(c)] and 4 [(d)]. Data have been
calculated over ensembles of 100 different interaction matri-
ces, each with 5 different initial conditions.

cycles (⟨Ns⟩ = 58.4 and 63) than to fixed-points (⟨Ns⟩ =
51.8 and 53.7). The prevalence of limit cycles further
depends on both the variability σ of interspecies interac-
tion and on the off-diagonal covariance parameter γ. As
a matter of fact, to have a limit cycle, one needs a large
enough σ to have a bifurcation in the first place. Sec-
ond, the bifurcation must also involve a pair of complex-
conjugated eigenvalues of the stability matrix. Both the
value of σ and the probability that a complex-conjugated
pair of eigenvalues triggers the bifurcation depend on γ.
Fig. 3 suggests that more negative values of γ, together
with the associated larger value of σ to have a bifur-
cation favor the occurence of limit cycles. This fact is
confirmed in Fig. 4, which shows the probability P (γ)
that the ecosystem reaches a state of persistent dynam-
ics. The numerical detection method employed for this
statistical analysis does not differentiate between limit
cycles and chaotic motion on a strange attractor, how-
ever sampling those data indicate that chaotic motion
sets in only at larger interactions, and constitutes a sig-
nificant fraction of the data only for σ = 4. Work to
better quantify this fraction is currently underway. Data
for larger σ are not shown as they exhibit mass extinc-
tions, with only very few surviving species at best, except
for the smallest values of γ.

The observed increased probability to find limit cy-
cles at negative values of γ is related to the associated
increased fraction of pairs of complex-conjugated eigen-
values in the spectrum of the stability matrix. Neglect-
ing inhomogeneities in the fixed-point abundancies N∗

i ,
this spectrum is real for γ = 1 and purely imaginary
for γ = −1, and it is expectable that the fraction of
real eigenvalues decreases as γ decreases. To the best
of our knowledge, the only mathematically rigorous re-
sult at intermediate values of γ is that only a fraction

O(
√
S) of the eigenvalues are real for the Ginibre en-

semble, i.e., at γ = 0 [45–47]. While these observations
suggest more frequent occurences of limit cycles as γ de-
creases, what truly matters is whether the extreme eigen-
value with largest real part is real or complex. Calculat-
ing how likely that is as a function of γ is a formidable
task and we are unaware of any rigorous result in this
direction. We therefore resort to numerical calculations
(See Supplemental Material [49], Fig. S1). As expected,
we find that the probability of a complex extreme eigen-
value increases with decreasing γ. To translate this result
into a probability to have a limit cycle emerge through a
Hopf bifurcation, we still need to take into account that
there is no bifurcation at γ = −1, since there, increasing
σ only stretches the spectrum in the imaginary direction.
We therefore expect that moderately negative values of γ
should favor the emergence of limit cycles. This qualita-
tive argument is confirmed by the data shown in Fig. 4.
A second numerical result shown in Fig. S1 [49] is that
this probability increases with increasing number S of
species.

We translate these results into the language of theoret-
ical ecology. Noting that γ interpolates between ecosys-
tems consisting purely of pairs of either mutualistic or
competitive species for γ = 1, to ecosystems with only
predator-prey pairs of species for γ = −1 [41], persis-
tent oscillating behavior in population abundances are
expected to be prevailing in large, sufficiently interacting
ecosystems with a majority of predator-prey pairs.

Conclusions. It has long been known that multi-
species ecosystems described by sets of coupled ordinary
differential equations of the type given in Eq. (1) may
exhibit any dynamical behavior [50]. Here we have em-
phasized a route joining the previously observed phases
governed by attractive fixed-points to those exhibiting
persistent dynamics. Because species in ecosystems and
food webs interact with one another in a necessarily
asymmetric way, fixed-point instabilities may occur via
a Hopf bifurcation. The resulting limit cycles preserve
biodiversity, since at least for some range of interaction
variability, their stability does not necessitate species ex-
tinctions.

Models of theoretical ecology are not expected to pre-
cisely reflect ecosystem behaviors. Instead, they may
shed light on different, observed behaviors of real or lab-
controlled ecosystems at a statistical level. In that re-
spect, our work emphasizes the emergence of chaotic be-
haviors of species population in ecosystems. Recent anal-
ysis of population time series found evidence of chaotic
behavior in at least 30% of the studied populations [11].
Fig. 2 further emphasizes parametrically sizable regimes
with small Lyapunov exponents, which has also been ob-
served [7, 11]. Other regimes with strong sensitivity
to even minor parametric changes [E.g. at σ ≳ 3 in
Fig. 2(f)] are characteristic of systems close to criticality
as discussed in Refs. [36, 37]. Since criticality slows down
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the dynamics, the behavior of ecosystems in this latter
regime is transient by nature and not governed by any
long-time asymptotic. That ecosystems are governed by
transient behaviors has been postulated in Refs. [28, 32–
35]. The emergence of Hopf bifurcations at negative val-
ues of γ finally explains recent results where ecosystems
with dominating predator-prey interactions display oscil-
latory behaviors in their population dynamics [51]. The
present work illustrates that all the different, observed or
theoretically postulated behaviors naturally emerge from
a single, unified model, without the need for exogeneous
intervention. The task at hand now is obviously to try
and determine, at least qualitatively, model parameters
corresponding to specifically observed ecosystems. Our
work has simplified that task in that it identified the two
key model parameters σ and γ driving transitions be-
tween different dynamical behaviors.

There are several important direction in which our
work should be extended. Among them, we mention
first, that we are currently investigating the frequency of
occurence of strange attractors vs. restabilization after
species extinction at large σ. Second, further investiga-
tions should extend our results to interaction matrices re-
flecting more realistic topologies of known ecological net-
works [52]. Third, investigating species distributions may
give precious information on the conditions under which
biodiversity and rarity may coexist [36]. Fourth, ecosys-
tem parameters are modified by climate changes [53–
55]. Investigating changes in ecosystem functioning un-
der climate-induced changes in trophic interactions is of
paramount interest. It would evidently have a strong
influence on ecosystem functioning in the critical and
chaotic regimes with strong parameter sensitivity. There
are certainly many other interesting extensions.
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[10] E. Benincà, H. Huisman, R. Heerkloss, K.D. Jöhnk, P.
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Route to Chaos in Complex,
Multi-Species Ecosystems : Supplemental

Material

EXTREME EIGENVALUE OF A REAL
ASYMMETRIC RANDOM MATRIX

The occurence of a Hopf bifurcation requires that the
first eigenvalue to cross the imaginary axis has a finite
imaginary part – in which case one actually has a pair of
different, complex-conjugated eigenvalue. Therefore, the
probability of a Hopf bifurcation is larger, if the proba-
bility that the extreme eigenvalue has a finite imaginary
part is larger. Fig. S1 shows this probability for the ma-
trix A of Eqs. (1–2) as a function of γ and for different
matrix sizes. The probability is larger at more negative
values of γ, moreover, it increases with the system size.
Once concludes that Hopf bifurcations are the rule rather
than the exception for sufficiently large ecosystems with
γ < 0.
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Figure S1. Probability that the eigenvalue with largest real
part of a random matrix defined by Eq. (2) is imaginary, as
a function of γ. Data correspond to averages over 10000 ma-
trices of size S = 57 (violet), 157 (blue) and 557 (green), and
5000 matrices with S = 1057 (red) and 2057 (black). Note the
limiting cases (not shown) P (γ = −1) = 1 and P (γ = 1) = 0.

LONG-TIME ASYMPTOTIC FOR DIFFERENT
INITIAL CONDITIONS

When σ is smaller than the May bound, σ < 1/(1+γ),
the long-time asymptotic is a single, globally attractive
fixed point. We illustrate that, at larger σ, and with a
finite (though small) extinction threshold, Nc = 10−20,
different asymptotic behaviors can be reached. Fig. S2

shows five different dynamics obtained from five different
initial distribution of populations subjected to the same
interaction matrix Aij . For clarity, we show only five
species for each case. Two initial conditions converge to-
ward a limit cycle and three toward a fixed point. The
three fixed points are evidently different. The two cycles
differ mostly by the survival of species #75 in panel (a)
and its extinction in panel (e). As a consequence, the os-
cillations are similar, but with larger amplitude in panel
(e). We stress that the dynamics has been investigated
for much longer times than shown, and that in all cases,
the dynamics remain the same as for t ≳ 350, in particu-
lar with the same amplitudes of oscillations in panels (a)
and (e).

0

1

2

3

N
(t

)

0 100 200 300
t [a.u.]

0

1

2

3
N

(t
)

0 100 200 300
t [a.u.]

0 100 200 300
t [a.u.]

10
-16

10
-12

10
-8

10
-4

10
0

#75 in panel (e)

#75 in panel (a)

(a) (b) (c)

(d) (e) (f)

Figure S2. Panels (a-e): Five different dynamics, corre-
sponding to the same realization of the interaction matrix,
with five different initial distribution of populations. The
limit cycles reached in panels (a) and (e) differ by the presence
of one additional species in panel (a). Species oscillate about
almost the same average values, with however large ampli-
tude in panel (e). Panel (f): Dynamics of species #75 which
persists in panel (a) but goes extinct in panel (e). Changing
the extinction threshold to Nc = 10−10 leads to two different
fixed points for the initial conditions of panels (a) and (e).
Five species are shown for each panel. The number of sur-
viving species is Ns = 57 [panel (a)], 51 [panel (b)], 49 [panel
(c)], 46 [panel (d)] and 56 [panel (e)].

Setting a higher extinction threshold Nc = 10−10

makes species #75 disappear also in panel (a), however
it further modifies the dynamics so that both the cases of
panel (a) and (e) converge toward different fixed points
(not shown). While the specifically followed dynamics
depends on Nc, the general conclusion that different dy-
namics can be followed by different initial conditions is
general.
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