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Abstract—The stability of inverter-dominated power
grids remains an active area of research. This paper
presents novel sufficient conditions for ensuring small-
signal stability in lossless and constant R/X grids with
highly heterogeneous mixes of grid-forming inverters
that implement an adapted V –q droop control. The
proposed conditions can be evaluated in the neigh-
borhood of each bus without information on the rest
of the grid. Apart from the presence of V –q droop,
no additional assumptions are made regarding the in-
verter control strategies, nor is dynamical homogeneity
across the system assumed. The analysis is enabled
by recasting the node dynamics in terms of complex
frequency and power, resulting in transfer functions
that directly capture the small-signal frequency and
amplitude responses to active and reactive power im-
balances. These transfer functions are directly aligned
with typical design considerations in grid-forming con-
trol. Building on an adapted small-phase theorem and
viewing the system as a closed feedback loop between
nodes and lines, the derived stability conditions also
yield new insights when applied to established inverter
control designs. We demonstrate in simulations that
our conditions are not overly conservative and can
identify individual inverters that are misconfigured and
cause instability.
Index Terms—grid-forming control, droop control,
complex frequency, voltage source converter, small-
signal stability

I. Introduction
The analysis of the small-signal stability of multi-machine
power grids is one of the central topics of power grid
analysis. The main result of the seminal paper of [1] was to
give conditions under which multiple machines and loads,
modeled as oscillators, are stable to small perturbations.
Since then, a plethora of results from power engineering
[2], control theory [3], [4], [5] and theoretical physics [6],
[7] have expanded our understanding of the small signal
stability of power systems. However, it remains an active
topic of research [8], [9], [10], [11]. In recent years, the topic
has gained renewed interest with the introduction of grid-
forming converters, which are expected to independently
stabilize the synchronous operation of highly renewable
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future power grids [12]. Grid-forming control remains an
active topic of research, and additionally, often detailed
device models are not published by the vendor [13], [14],
[15]. There is a wide range of stability results for concrete
control strategies, as reviewed in [16]. However, most of
them are ad hoc and do not generalize naturally to other
control schemes.
In this paper we give a decentralized stability condition
based on the transfer functions that describe how a grid-
forming node’s frequency and relative voltage velocity
react to deviations from power, reactive power and voltage
set points. Remarkably, our results are technology-neutral
and apply to all grid-forming nodal actors for which the
response to reactive power and voltage set point deviations
is proportional, which is an established principle, see for
example [17], [18].
The variables used in this work correspond to working with
the complex frequency [19] and describing the network
state using time-invariant variables that nevertheless fully
characterize the operating state at the desired frequency
[20], [21]. Such variables have been shown to be highly
effective for identifying grid-forming behavior in the grid
[22]. As we will see, an advantage of working in these
quantities is that the transfer matrices do not depend on
arbitrary quantities such as phase angles. The resulting
stability conditions are more explicit, simpler and more
easily interpreted than, for example, those of [11], [8], [4].
In particular, the transfer matrices often do not explicitly
depend on the operation point around which we linearize,
and the conditions can be mapped back to system pa-
rameters immediately. We demonstrate this by recovering
several classical results as special cases.
As in [11], [8], the central ingredient to our result is the
small phase theory introduced in [23]. A companion paper
to this work [24] explores the application of this approach
to the broad class of adaptive dynamical networks [25]
and demonstrates that these methods can match necessary
conditions in that setting. This approach can be seen as
an extensive generalization of passivity. Passivity-based
methods have been previously used to derive decentral
stability conditions for scalar networked systems [26] and
for power grids [4], [27]. We improve on these results by
giving more broadly applicable conditions that are fully
decentralized and less conservative. Similar results were
independently obtained in [28], however, only for a heavily
restricted class of models when compared to our results.
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II. Statement of the main result

We begin by presenting the key assumptions and the main
result, using the bare minimum of notation and concepts
necessary to state them. For clarity, we first treat lossless
systems. The case of homogeneous ratio of resistance to
reactance is treated in section V.
We assume a lossless grid with admittance Y , which is a
Laplace matrix. Denote nodal complex voltages v = vd +
jvq, a vector with components

vn(t) = Vn(t)ejφn(t) , (1)

with phase φn and amplitude Vn. The nodal current
injections are ı = Y v, and the nodal power injections
pn + jqn = vnın.
Quantities at the operating point are written with a super-
script ◦. In the co-rotating frame with the grid’s nominal
frequency, the operating point is given by constant v◦

n that
induce V ◦

n , φ◦
n, and a power flow solution p◦

n, q◦
n matching

the set point.
We assume that the dynamics of the nodes can be for-
mulated in terms of the complex frequency ηn := v̇n/vn

(see [19], [20] for details). Its real part ϱn = V̇n/Vn is
the relative amplitude velocity, and its imaginary part,
ωn = φ̇n, is the angular velocity, which is proportional
to the frequency. Without loss of generality, we take the
complex frequency at the operational state to be equal to
zero: ω◦ = ϱ◦ = 0. In practical terms, this assumption
implies that all nodes have some amount of grid-forming
capability.
We can understand the behavior of a broad class of
dynamical actors in power grids by considering how their
complex frequency reacts to changes in the network state.
Near the power flow solution of interest, we can consider
the linearized response in terms of the transfer functions.
From this perspective, grid-forming actors take the current
as input and supply a voltage as output. We will focus our
analysis on systems that implement a droop relationship
between voltage and reactive power. This droop relation-
ship is typical in models of power grid actors [18], [5]. We
will use p and the shifted reactive power q̂n := qn + αnVn

that implements the V -q droop relationship with propor-
tionality coefficient αn ∈ R as input for the nodes.
We then have four transfer functions T ••

n (s) ∈ C that
describe the nodal behavior near the power flow of interest:[

ϱn

ωn

]
= −

[
T ϱq̂

n T ϱp
n

T ωq̂
n T ωp

n

] [
∆q̂n

∆pn

]
=: −Tn

[
∆q̂n

∆pn

]
, (2)

where all quantities except αn depend on the Laplace
frequency s.
Following [20], the matrix elements of Tn(s) are expected
to only depend on p◦, q◦ and V ◦, but not on the complex
voltage v◦

n directly. As v◦
n is only defined uniquely up to

phase, this is a key advantage of working in terms of phase
shift invariant quantities like p, q and η rather than, say,
v̇, v, and ı, ı. This mirrors the choice of power and polar
coordinates in [4]. Our main result is:

Proposition 1 (Small-signal stability of power grids with
V -q droop). Consider a lossless power grid with admittance
matrix Y and an operating point with voltage phase angles
φ◦

n and magnitudes V ◦
n , and Tn(s) the transfer function

matrices from q̂n, pn, to ϱn and ωn for some αn.
The operating point is linearly stable if |φ◦

n −φ◦
m| < π/2 for

all n and m connected by a line, the Tn(s) are internally
stable, and for all s ∈ [0, ∞] it holds

ℜ(T ϱq̂
n ) + ℜ(T ωp

n ) > 0 , (3)

ℜ(T ϱq̂
n ) · ℜ(T ωp

n ) >
1
4

∣∣∣T ϱp
n + T

ωq̂

n

∣∣∣2 , (4)

αn ≥ 2
∑
m

Ỹnm
V ◦

m

cos(φ◦
n − φ◦

m) . (5)

Proof. We provide the proof in appendix D.

We restrict our analysis to systems for which there is a
choice of αn that eliminates Vn as a nodal state variable
by absorbing it into q̂. Otherwise, the first two conditions
might fail for small s. The reason for this is that Vn is
a local state variable at the bus, while V̇n appears as
output. This is in contrast to φn, which does not appear
[20]. This mismatch makes the Hermitian part of the
transfer function matrix non-definite for small s. Choosing
αn such that it eliminates Vn as a nodal state variable
makes Tn well-behaved. This can easily be achieved for
many models of power grid actors [18], [5] and notably
also covers all systems analyzed in [4]. The precise model
class is discussed in more detail in appendix C. From
here on we assume that αn is chosen in this way. An
alternative approach is to restrict the model class such that
the transfer function matrix remains well behaved, e.g. by
requiring T ϱp

n = T ωq̂
n = 0. This alternative approach has

been explored independently in depth in [28].
Our conditions align well with established practice in the
design of grid-forming power grid actors. The diagonal
terms T ϱq̂

n and T ωp
n implement a stabilizing reaction of

phase and amplitude to active and reactive power devi-
ations, respectively. Equations (3)-(4) together imply that
these transfer functions need to have negative real parts
and dominate the dynamics. In addition, (4) quantifies
how large the crosstalks T ωq̂

n between reactive power and
frequency, and T ϱp

n between active power and voltage
amplitude, may be, without endangering stability.
From the physics of the interconnection, we get a third
condition: that the stabilization of the amplitude is suf-
ficiently strong relative to the coupling on the network,
as quantified in (5). This condition relates the nodal V -q
droop ratio αn to local grid conditions. Note in particular
that the lower bound in (5) can be negative, indicating
that local grid conditions are so strong that even miscon-
figured droop relationships can be tolerated.
The remainder of this paper is structured as follows. In
Section III, we derive what our main results imply in
concrete systems and compare them with the results of
[4] and [7]. We then present numerical results for the
IEEE 14-bus system in Section IV, which demonstrate
that our conditions can be tight in this setting. Finally,



IEEE TRANSACTIONS ON POWER SYSTEMS 3

we present the generalization to lossy grids in Section V
and provide a discussion and outlook in Section VI. The
appendix includes the relevant mathematical definitions,
derivations, and proofs.

III. Concrete systems
We will now demonstrate that the conditions of Proposi-
tion 1 are viable to study the behavior of a wide range of
typically considered grid models, and often can even im-
prove on established theoretical considerations. We begin
with generalized droop laws.

A. Generalized droop
The most general dynamical droop law relating voltage,
frequency, active and reactive power is of the form:

φ̇ = c1∆p + c2∆q + c3∆V, (6)
V̇ = c4∆p + c5∆q + c6∆V. (7)

Our assumption on exact droop behavior implies c6/c5 =
c3/c2 =: α, and we can reparametrize this as

φ̇ = −Cω
p ∆p − Cω

q ∆q̂, (8)
V̇ = V ◦ ·

(
−CV

p ∆p − CV
q ∆q̂

)
. (9)

This is also the most general form that the linearized
equations of a grid forming device with exact V -q droop
can take when neglecting internal dynamics [20]. The class
of models considered in [5] and [4] Proposition 5 and 6 is
a special case of the class studied in this section.
In this section, we discuss and contrast the theoretical
results. Below, in Section IV, we will show that our
conditions are also remarkably exact in this model class.
The transfer matrix for (8), (9) is

TTT n(s) =
[
CV

q CV
p

Cω
q Cω

p

]
(10)

and (3)-(4) become
CV

q + Cω
p > 0 (11)

CV
q · Cω

p >
1
4
(
CV

p + Cω
q

)2
. (12)

The well-established droop principles of controlling φn

with −∆pn and Vn with −∆qn and −∆Vn (see for ex-
ample [17], [18]) are reflected in T ωp

n > 0 and T ϱq̂
n > 0.

Equations (11)-(12) tell us that these coefficients need to
have the same sign and need to be positive. Equation (12)
further quantifies that cross-coupling, reflected by T ϱp

n and
T ωq̂

n , needs to be sufficiently small in comparison.
The case considered in [4] Proposition 5 corresponds to
CV

p = Cω
q = 0. Then our stability conditions simplify

to CV
q > 0 and Cω

p > 0 together with the condition on
α. The conditions presented here improve upon those in
Proposition 5 of [4] for this model class. They require
that Cω

p and αn are larger than a positive constant that
depends on the entire network, and assume the signs of
CV

q and Cω
p from the outset. In contrast, we find no bound

other than the ‘sign’ on the C, and our lower bound for
αn is a local quantity that can even become negative. We
will illustrate that this occurs in practical grid situations
in the section on numerical experiments.

B. Third-order models

We now compare our results to established conditions in
the widely studied case of second-order phase dynamics
and voltage control. For this purpose, we need a single
internal variable xn that represents the phase velocity
(angular frequency) relative to the nominal frequency. For
purposes of regularization, we further introduce a first-
order feed-through term with coefficient δn:

φ̇n = xn − δn∆pn , (13)
τpn ẋn = −Dnxn − kpn∆pn , (14)
τqn

V̇n = −∆Vn − kqn
∆qn . (15)

At δn = 0 we have pure second-order phase dynamics.
We adapted the notation of the droop-controlled inverter
model of [5], which we recover at δn = 0. With kqn

= α−1
n ,

the transfer matrix is given by

Tn =
[

(V ◦
n αnτqn)−1 0

0 δn + kpn

sτpn +Dn

]
, (16)

assuming τpn
> 0 and τqn

> 0. A similar model is the
third-order model for synchronous machines [18], where
the voltage dynamics are slightly different:

τVn V̇n = −∆Vn − Xn∆(qn/Vn) , (17)

with transient reactance Xn ≥ 0. The transfer matrices of
both models are identical via the invertible mapping

Xn = V ◦
n kqn

(
1 + 2kqn

q◦
n

V ◦
n

)−1
, (18)

τVn
= τqn

(
1 + 2kqnq◦

n

V ◦
n

)−1
. (19)

This transfer matrix also represents the dynamics of vir-
tual synchronous machines [29], quadratic droop control
[30], reactive current control [10], and some controls with
adaptive inertia [31] through similar mappings.
For the nodal transfer matrices to be stable as required
by Proposition 1, we need Dn > 0. Conditions (3)-(4) are
fulfilled at all s as long as δn > 0, kpn

> −δnDn and
αn > 0.
At δn = 0 and s = j∞, we have T ωp

n = 0 and violate
(4). However, this is sufficient to establish semi-stability at
δn = 0, because stability holds for arbitrarily small δn and
the eigenvalues of the system’s Jacobian are continuous
functions of the parameters. Furthermore, including gain
information allows to treat this system at δn = 0, too [24].
In [5], stability conditions for this model were given in
terms of matrix inequalities with a similar interpretation
to our analysis: the diagonal couplings T ϱq̂

n and T ωp
n need

to be strong in the positive direction, while the off-diagonal
cross-coupling need to be bounded relatively. We obtain a
similar result, which, however, is decentralized and thus
easier to analyze and implement.
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In [5], it was also observed that decreasing kqn
can in-

crease stability by weakening the cross-coupling. This is
quantified in our lower bound for αn = k−1

qn
in (5):

k−1
qn

≥ 2
∑
m

Ỹnm
V ◦

m

cos(φ◦
n − φ◦

m) . (20)

To our knowledge, this lower bound is entirely novel and
has not previously been reported in the literature. In [32],
[7], under the assumption that all nodes in the system
are of the same functional form, a bound for kqn

was also
derived. This bound can be tighter or looser than ours,
depending on the operating points.

IV. Simulations

To test our stability conditions, we simulated the stability
of the IEEE 14-bus system equipped with grid-forming
inverters following the generalized droop control given in
equations (8)-(9).
First, we tested the condition given in equation (5). We
stressed the grid by simulating imperfect reactive power
provision. We choose reactive power values varying by a
random factor of ±0.3 around the ideal reactive power
per node, leading to grid states with moderate voltage
variation. We then computed the sufficient bounds for α
to be stable, αtheory

n . Setting all inverters to αtheory
n , we

then systematically varied one inverter setting to find the
critical value αcrit

n necessary for stability. If our conditions
are overly conservative, we would expect that αcrit

n is
smaller than αtheory

n . Instead, we see in Figure 1 that the
theoretical prediction is almost perfect. We also observe
that αn can locally be negative. This demonstrates the
power of our theoretical analysis to take into account local
grid conditions in a far more sophisticated manner than
previous analyses. In fact, in the system tested, our theo-
retical predictions only vary notably from the simulation
results when αcrit

n is very close to zero. In this case, our
prediction becomes slightly conservative (Figure 1 inset).
Figure 2 illustrates example trajectories for a stable system
where all nodes are at the theoretical α value, and an
unstable system where one node violates the theoretical
stability guarantee. We observe that the violation leads to
a slow voltage collapse within the system. As only one node
violates our theoretical bound in this system, our bounds
successfully pinpoint the origin of instability in this case.
Finally, we also tested condition (4) for the same setup.
We set α = αtheory

n at each node, and varied the strength
of the cross-coupling terms CV

p and Cω
q , which couple

active power to voltage amplitude and reactive power to
frequency, respectively. We observed that when the cross-
couplings are of similar magnitude to the main couplings
CV

q and Cω
p , which is to be expected for a well-tuned

inverter, our stability conditions accurately capture the
boundary of stability (Figure 3). The conditions become
conservative only when one cross-coupling term remains
small while the other becomes large, which is an untypical
control setting.

Figure 1: Numerical small-signal stability of the IEEE 14-
bus system for CV

p = 1, CV
q = 1, CV

q = 0.5, Cω
p = 0.5. The

predicted αtheory exactly matches the numerically simu-
lated stability threshold except when close to 0 (inset).
When αcrit

n < αtheory
n , we observe αcrit

n /αtheory
n < 1 for

positive α and αcrit
n /αtheory

n > 1 for negative α.

Figure 2: Trajectories for αn = αtheory
n (upper) and the

case where α1 < αtheory
n . Improper configured voltage

droop at one node causes a slow voltage collapse.

V. Lossy lines
The principles of controlling V with q̂ and φ with p, which
are quantified by Proposition 1, are valid for lossless trans-
mission lines. In the presence of losses, similar principles
hold with q̂ and p getting mixed depending on the ratio
of resistance R and reactance X.
Assuming constant R/X ratio for all lines, we define
tan κ := R/X. The rescaled rotation matrix O(κ), and
rotated transfer function matrix T̃n are defined as

O(R/X) :=
[

1 −R/X
R/X 1

]
, (21)

T n(s) := T̃n(s) O(R/X). (22)

Note that O cos κ is a rotation matrix. In the lossless case,
we have O = I, the identity, and T̃ n = T n. The nodes now
obey [

ϱn

ωn

]
= −T̃ n(s)

([
∆qn

∆pn

]
+ O

[
αn∆Vn

0

])
. (23)
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Figure 3: Numerical small-signal stability of the IEEE 14-
bus system for CV

q = 1, Cω
p = 1, and αtheory

n . Green
and black dots indicate numerical linear stability and
instability, respectively, for each parameter configuration.
The shaded area indicates our sufficient condition. In the
case that CV

q = Cω
p , our condition is exact.

This way, the conditions of Proposition 1 for T n and αn

also hold for lossy grids, with an analogous proof, because
the admittance can be rotated real for the analysis of the
transmission lines’ transfer matrix.
What does this parametrization mean in practice? To
interpret the conditions on T n, consider that it can be
seen as a transfer function from the lines’ output

O−1
[
∆qn

∆pn

]
+
[
αn∆Vn

0

]
(24)

to
[
ρn ωn

]⊤. This is a droop between q̂ = q + αV
as before, and p̂ = p + αV R/X instead of just p, i.e.,
the control is adapted to the R/X ratio. This mirrors
the control design considered, for example, in [27], where
current and power are also rotated by the angle defined
by R/X.

VI. Discussion and Conclusion
In this paper, we derived fully decentralized small-signal
stability conditions for power grids under the assumption
of V -q droop and homogeneous R/X ratio for the lines.
The preceding results provide a simple characterization of
small-signal stability of heterogeneous grids in terms of
transfer matrices between power mismatch on the input
side, and frequency and voltage velocity on the output
side. Such transfer function-based specifications are natu-
ral for the design and specification of decentralized power
grid control strategies, and could potentially be directly
encoded in grid codes [33]. This is especially interesting
as the transfer functions we are concerned with can be
measured experimentally [22].
The type of conditions derived here are robust in the
sense that, if the numerical range of a nodal transfer
matrix is bounded away from zero for all s on the contour
(see proof), a perturbation of the transfer matrix of H∞

norm smaller than the bound, can not make the system
unstable. However, as we have to assume an exact droop
relationship, this robustness does not yet easily extend to
actual system parameters.
As the complex frequency approach [19] can also capture
load models and grid-following control, as shown in [34],
we expect that our results can be adapted to load models.
A starting point for an extension to line dynamics is
given in [28]. An alternative approach would be to use the
observation in Appendix B of [21] that line dynamics in
the case of a homogeneous R/X ratio are essentially a low-
pass filter on the nodal power flow that can be absorbed
into the node dynamics.
The most significant challenge for our approach is to
accurately account for non-droop-like reactions to voltage
amplitude deviations. This also prevents us from directly
applying the theory to conventional models in the presence
of losses. Naively adding in additional voltage dynamics
on the nodal side fails due to the sectoriality constraints.
Similarly, models that do not have a pass-through like δn

in (13) fail our conditions at infinite imaginary s. Lastly,
dVOC [35], [36] is covered by our theorem only in the
unloaded case. To address these limitations, it will be
necessary to accurately incorporate gain information into
the stability analysis. The companion paper [24] explores
this in the context of adaptive dynamical networks. We
leave this extension of the methods introduced in this
paper to future work.
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Appendix A
Notational Preliminaries

To prove the above result, we begin by expanding on the
notation used above. We want to consider the small-signal
stability of power grids with a heterogeneous mix of grid-
forming actors. The N nodes are indexed n and m, 1 ≤
n, m ≤ N . The E edges in the set of edges E are indexed by
ordered pairs e = (n, m), n < m. For any nodal quantity
xn, we denote the overall N -dimensional vector by x. We
write [x] for the diagonal matrix with xn on the diagonal:
[x]nm = δnmxn, where δnm = 1if n = m, and 0 else. In
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general, matrices are uppercase bold, e.g., A, and vectors
are lower case bold. We denote with 1 the constant vector
1n = 1, so the identity matrix is [1] = I, and similarly for
0 and [0].
We denote the imaginary unit j, the complex conjugate of
a quantity z by z, the transpose of a vector or matrix A
as A⊺ and the complex transpose by A†.
We will often have two quantities per node, e.g., zn and
zn. Stacking the vector of nodal quantities is written as[

z
z

]
, (25)

We also will often be looking only at the components
associated to a single node n in such a stacked vector. To
this end, we introduce the matrix Pn which selects these
entries [

zn

zn

]
= Pn

[
z
z

]
, (26)

and its transpose P †
n. Note that Pn are isometries, and

P †
nPn is an orthogonal projection matrix.

Given a set of nodewise matrices An, the matrix built
from them with the direct sum

⊕
then acts on our stacked

vector as: ⊕
n

An

[
z
z

]
:=
∑

n

P †
nAnPn

[
z
z

]
, (27)

While the matrix representation of
⊕

n An is not block
diagonal on the stacking

[
z z

]⊺, it is block diagonal when
stacking

[
z1 z1 z2 z2 . . . zn zn

]⊺.
We also introduce the matrix Pe that selects the states
related to the edge e from our stacked vector:

Pe

[
z
z

]
= P(n,m)

[
z
z

]
=


zn

zn

zm

zm

 . (28)

The Pe are isometries, but P †
e Pe are not mutually orthog-

onal. Therefore, a matrix built from 4 × 4 matrices Ae as∑
e

P †
e AePe , (29)

is not block diagonal. However, it can be written as the
projection of a block diagonal matrix

⊕
e Ae and we write:∑

e

P †
e AePe = B†

+
⊕

e

AeB+ , (30)

for an according 4E × 2N matrix B+ that fulfills this
equation.

Appendix B
Phase stability preliminaries

Our results are based on the Generalized Small Phase
Theorem of Chen et al. [23]. We prove a straightforward
proposition stating that if the transfer matrices of the
system under consideration have a block structure, the
global stability conditions can be decomposed into local

conditions. An immediate application are networked sys-
tems that consist of node and edge variables that are
coupled according to a graph.
Using this proposition we give a precise statement of
the stability conditions for a power grid of general grid-
forming grid actors with V -q droop as introduced above.
For completeness, we begin by recalling the Small Phase
Theorem of [23], which provides conditions for the stability
of the connected system G#H, in terms of the numerical
range W and the angular field of values W ′ [37, Sec. 1.0,
Def. 1.1.2], [38], [39], defined for a matrix M ∈ CN×N as

W (M) =
{
z†Mz | z ∈ CN , z†z = 1

}
, (31)

W ′(M) =
{
z†Mz | z ∈ CN , z†z > 0

}
. (32)

When the numerical range lies in a half complex plane,
we introduce the notion of sectoriality. Assume that 0 is
not in the interior of W (M). Define ϕ(M) and ϕ(M) as
the maximum and minimum arguments of the elements of
such a W (M), and δ(M) := ϕ(M) − ϕ(M). Then the
matrix M is

• semi-sectorial if δ(M) ≤ π;
• quasi-sectorial if δ(M) < π;
• sectorial if 0 /∈ W (M).

Notice that a non-sectorial matrix M is semi-sectorial if
0 is on the boundary of W (M).
Let RHm×m

∞ denote the set of m × m transfer matrices
of real-rational proper stable systems. For these systems,
all the poles of any H(s) ∈ RHm×m

∞ (should there be
any) are in the open left-hand side of the plane. A system
G ∈ RHm×m

∞ is called frequency-wise sectorial if G(s) is
sectorial for all s ∈ jR. A system G(s) is semi-stable if
its poles are in the closed left half plane. Take jΩ the set
of poles on the imaginary axis, and jR \ jΩ the indented
imaginary axis with half-circles of radius ϵ ∈ R around
the poles and of radius 1/ϵ around ∞ if it is a zero.
These ϵ-detours lie in the right half-plane. We call this
indented imaginary axis “the contour”. A system is semi-
stable frequency-wise semi-sectorial if G(s) has constant
rank along the contour and is semi-sectorial on jR \ jΩ.
The phase center is defined as γ[G(s)] :={

ϕ[G(s)] + ϕ[G(s)]
}

/2, and without loss of generality,
we assume that γ[G(ϵ+)] := limϵ↘0 γ[G(ϵ)] = 0.
We can now recall Chen et al.’s Small Phase Theorem.

Theorem 2 (Generalized Small Phase Theorem, [23]).
Let G be semi-stable frequency-wise semi-sectorial with jΩ
being the set of poles on the imaginary axis, and H ∈ RH∞
be frequency-wise sectorial. Then G#H is stable if

sup
s∈j[0,∞]\jΩ

[
ϕ(G(s)) + ϕ(H(s))

]
< π , (33)

inf
s∈j[0,∞]\jΩ

[
ϕ(G(s)) + ϕ(H(s))

]
> −π . (34)

Proof. See [23]

If the system G#H has a block structure, e.g., a net-
worked distributed power system, we can show the follow-
ing:
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Proposition 3 (Generalized Small Phase Theorem with
Block Structure). Consider the system G#H with the
block structure H =

⊕
n Tn(s) and G = B†⊕

e Te(s)B for
some B of appropriate dimensions. For each n, let Tn(s) ∈
RH∞ be frequency-wise sectorial. For each e, let Te(s) be
semi-stable frequency-wise semi-sectorial individually and
along the indented imaginary axis avoiding the poles of all
Te(s) for indents smaller than some finite ϵ∗. Write jΩ for
the union of the set of poles on the imaginary axis. Assume
that G(s) has constant rank along the contour. Then, the
interconnected system G#H is stable if

max
n

ϕ (Tn(s)) − min
n

ϕ (Tn(s)) < π , (35)

for all s ∈ j[0, ∞], and

max
e

ϕ (Te(s)) − min
e

ϕ (Te(s)) ≤ π , (36)

for all s /∈ jΩ, and

sup
n,e,s/∈jΩ

[
ϕ (Tn(s)) + ϕ (Te(s))

]
< π , (37)

inf
n,e,s/∈jΩ

[
ϕ (Tn(s)) + ϕ (Te(s))

]
> −π . (38)

Remark: H is stable, and its sectoriality is ensured by
(35). G is semi-stable, and its semi-sectoriality is ensured
by (36) and the rank condition. Equations (37)-(38) imply
the stability condition of Theorem 2.

Proof. We provide the proof in Appendix E.

Appendix C
Linear form of power grids with V -q droop

To make use of Proposition 3 we have to linearize the
power grid model under investigation into an appropriate
form. In this section, we show that the power grid can
be represented as an interconnected feedback system of
two transfer matrices: T nod#T net. T nod includes all nodal
transfer matrices from q̂n and pn to ϱn and ωn, as in (2).
T net represents the network structure and the physics of
the coupling, as it takes ϱ and ω as inputs and provides
q̂ and p as outputs. The fundamental assumption we
make is that the nodes can be modeled as voltage sources
that react to conditions in the grid. This assumption is
most natural in the context of grid-forming actors, such
as power plants or grid-forming inverters.

A. Complex frequency notation
As noted above, every node has a complex voltage (repre-
senting a balanced three-phase voltage) vn = vd,n + jvq,n:

vn(t) = Vn(t)ejφn(t) = eθn(t) , (39)

and a complex current ın. The latter is given in terms of
the former through the admittance matrix Y :

ı(t) = Y · v(t) = −jL · v(t) . (40)

The matrix L := je−jκY ∈ RN×N is a real, symmetric,
positive definite Laplacian. We show the proof for lossless

grids, where κ = 0. The lossy case goes analogously with
a rotation, see Section V.
We use a power-invariant transformation from ABC co-
ordinates, so that the apparent power is given by Sn(t) =
vn(t)ın(t) = pn(t) + jqn(t) with active power pn(t) and
reactive power qn(t).
Milano [19] suggests writing the nodal dynamics through
the time derivative of the complex phase θn, the complex
frequency η:

ηn(t) = θ̇n(t) , (41)
v̇n(t) = ηn(t)vn(t) (42)

= (ϱn(t) + jωn(t))vn(t) . (43)

We will drop the explicit time dependence (t) from now
on. By considering both, the complex equation and the
complex conjugate equation,

v̇n = ηnvn , (44)
v̇n = ηnvn , (45)

we can switch back and forth between complex and real
picture, using a linear transformation. The velocities ϱn,
ωn, ηn and ηn are related by:[

ηn

ηn

]
=
[
1 j
1 −j

] [
ϱn

ωn

]
= U

[
ϱn

ωn

]
, (46)[

ϱn

ωn

]
= 1

2

[
1 1

−j j

] [
ηn

ηn

]
= 1

2U
†
[
ηn

ηn

]
, (47)

Note that U−1 = 1
2U

†, thus U/
√

2 is a unitary matrix.
This means that under U as coordinate transformation,
all pertinent properties of linear dynamical systems are
retained.

B. A system of grid-forming actors
We are interested in conditions that guarantee small-signal
stability of a heterogeneous system of grid-forming actors,
without strong assumptions on their internal structure. As
noted above, we assume that we can model the nodes
as voltages reacting to the grid state. We assume that
the voltages react in a smooth, differentiable manner, and
that Vn > 0. Thus, ωn and ϱn are defined, and can be
chosen as the nodal output variable. Using pn and qn as
the input that the nodal actor sees from the grid, we can
write the general form of a node’s behavior in terms of
three functions rn, on and fx

n :

ϱn = rn(φn, Vn, pn, qn,xn) , (48)
ωn = on(φn, Vn, pn, qn,xn) , (49)
ẋn = fx

n (φn, Vn, pn, qn,xn) . (50)

Here, xn ∈ Rnvar are internal states of dimension nvar
that reflect the inner workings of the grid actor, and are
not visible directly in the output v. Examples include
generator frequencies, inner-loop DC voltages, or the d-
and q-components of internal AC quantities.
We make two assumptions on the form of the functions
rn, on and fx

n : I) Following [20], we assume that the
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nodal dynamics does not explicitly depend on φn. This
assumption is justified by symmetry considerations and
the desire to not introduce harmonic disturbances into the
grid. II) We assume that the reaction to a deviation in the
voltage mirrors that of a deviation in the reactive power.
That is, we assume that near the operation point, rn, on

and fx
n only depend on q̂n = qn + αnVn for some real

αn rather than on both qn and Vn separately. With these
assumptions we have:

ϱn = rn(pn, q̂n,xn) , (51)
ωn = on(pn, q̂n,xn) , (52)
ẋn = fx

n (pn, q̂n,xn) . (53)

C. The linearized nodal response
We define the coefficients of the Jacobian as

Jωp
n := ∂on

∂pn
, Jϱq̂

n = ∂rn

∂(q̂n) , Jxx
n = ∂fx

n

∂xn
, etc. (54)

We now want to look at the linear response of the nodal
subsystem around an operating point v◦

n , i◦
n. We assume

that the operating point satisfies ϱ◦
n = ω◦

n = ẋn = 0.
Write ∆pn = pn − p◦

n and ∆q̂n = qn − q◦
n + αn(Vn − V ◦

n )
and assume that x◦

n = 0. The linearized nodal dynamics
are then

ẋn = Jxp
n ∆pn + Jxq

n ∆q̂n + Jxx
n xn , (55)

ϱn = Jϱp
n ∆pn + Jϱq̂

n ∆q̂n + Jϱx
n xn , (56)

ωn = Jωp
n ∆pn + Jωq̂

n ∆q̂n + Jωx
n xn . (57)

which we stack as

ẋn = Jxqp
n

[
∆q̂n

∆pn

]
+ Jxx

n xn , (58)[
ϱn

ωn

]
= Jϱωq̂p

n

[
∆q̂n

∆pn

]
+ Jϱωx

n xn . (59)

The nodal transfer matrix from
[
∆q̂n ∆pn

]⊺ to[
ϱn ωn

]⊺ is then just

−Tn(s) = Jϱωq̂p
n + Jϱωx

n (s − Jxx
n )−1Jxqp

n . (60)

We can summarize the transfer matrices of all nodes in
T nod such that[

ϱ
ω

]
= T nod

[
∆q̂
∆p

]
:=
⊕

n

Tn(s)
[
∆q̂
∆p

]
. (61)

D. The linearized network response
To obtain the full linearized equations, we need the re-
sponse of ∆pn and ∆q̂n to variations in the complex angle
θn around a given power flow with θ◦

n.
This is most easily given in terms of a variant of the
complex power and the complex couplings introduced by
[21]. We define

σn := qn + jpn , (62)

to mirror the definition of the complex frequency [19]. In
terms of the usual complex power, this is σn = jSn. This

complex power can be expressed in terms of the Hermitian
matrix K ∈ CN×N of complex couplings [19], [21]:

Knm = vnLnmvm , (63)
σn =

∑
m

Knm . (64)

These quantities have a very simple derivative with respect
to the complex phases of the system:

∂Knm

∂θh
= δhmKnm ,

∂Knm

∂θh

= δhnKnm , (65)

∂σn

∂θh
= Knh ,

∂σn

∂θh

= δnhσn . (66)

The linearization of σn around an operating state of the
system with complex couplings K◦

nm and complex power
σ◦

n is then given by

σn ≈ σ◦
n + σ◦

n∆θn +
∑
m

K◦
nm∆θm (67)

or, in vector notation,[
∆σ
∆σ

]
≈
[

K◦ [σ◦]
[σ◦] K

◦

] [
∆θ

∆θ

]
. (68)

As the nodal dynamics depend on ∆q̂n and ∆pn, as inputs,
we now consider

∆σn + αn∆Vn = ∆q̂n + j∆pn , (69)

for the output of the edge dynamics. Together with ∆Vn ≈
V ◦

n
1
2 (∆θ + ∆θ), we obtain[

∆σ + α∆V
∆σ + α∆V

]
≈ Jnet

[
∆θ

∆θ

]
, (70)

with the transfer matrix

Jnet :=
[

K◦ + 1
2 [α][V ◦] [σ◦] + 1

2 [α][V ◦]
[σ◦] + 1

2 [α][V ◦] K
◦ + 1

2 [α][V ◦]

]
. (71)

Note that as K◦ is Hermitian, and so is Jnet. Further, we
see from (64) that

[
1 −1

]⊺ is a zero mode of the network
response Jnet.
At this point, we can see the necessity of incorporating
the V -q droop into the network response. Without the
presence of the αn, Jnet would be indefinite and thus not
amenable to sectorial analysis.

E. The full system
Above we derived the nodal transfer matrix from pn, qn +
αnVn to ϱn and ωn, and the network response from θn

and θn to σn +αnVn and σn +αnVn. We can now combine
these into the full system equations. Recall that

∆θ̇n = ηn , (72)
s∆θn = ηn , (73)

where the latter equation is in Laplace space. Let us
introduce Ũ ∈ C2N×2N ,

Ũ =
⊕

n

U , (74)
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With this we can write the network response from a
deviation in ϱ and ω to a deviation in q̂ and p as

T net(s) = 1
2Ũ

† 1
s
JnetŨ . (75)

The major remaining challenge to applying Proposition
3 and getting decentralized conditions, is to decompose
this matrix into edge-wise contributions. As we will see in
the next section, we can treat the network response as a
superposition of two-node systems.
The full system T nod#T net then has the structure⊕

n

Tn(s) # T net(s) . (76)

Appendix D
Proof of the main Proposition 1

We now proceed to the proof of the main proposition. The
first step is to provide conditions for the sectoriality of
the nodal transfer matrices. Then we provide the edge-
wise decomposition of the network response, and demon-
strate under which conditions it is semi-stable frequency-
wise semi-sectorial. The main Theorem then follows by
applying Proposition 3.

A. Sectoriality of the nodal transfer matrix
Each Tn(s) of the form (2) is a complex 2×2 matrix. Here,
we give conditions that ensure that it is strictly accretive,
meaning the numerical range is contained in the open right
half plane: ϕ > −π/2 and ϕ < π/2. Is gives especially
concise conditions for sectoriality.

Lemma 4. A complex 2 × 2 matrix Tn(s) is strictly
accretive, hence sectorial, if and only if its four entries
[see (2)] fulfill (3) and (4):

ℜ(T ωp
n ) + ℜ(T ϱq̂

n ) > 0 , (77)

ℜ(T ωp
n ) · ℜ(T ϱq̂

n ) >
1
4

∣∣∣T ωq̂
n + T

ϱp

n

∣∣∣2 . (78)

Proof. If the numerical range W of Tn (see (31)) is
contained in the right-hand side, the real part of W (Tn)
has to be strictly positive: ℜ(W (Tn(s))) > 0. The real
part of the numerical range is given by the numerical
range of the Hermitian part of Tn(s), which we denote
T̂n(s) = 1

2 (Tn(s) + Tn(s)†). The numerical range of a
Hermitian matrix is on the real axis. It is strictly positive
if and only if the matrix is positive definite. The two by
two matrix T̂n(s) is positive definite if and only if its
determinant and its trace are positive. Expressed in terms
of the matrix elements of Tn(s) these conditions are (3)
and (4).

B. Edge-wise decomposition and analysis of the network
response
We now return to the network response. Our goal is to
show that under the condition that [see (5)]

αn ≥ αtheory
n := 2

∑
m

Ỹnm
V ◦

m

cos(φ◦
n − φ◦

m) , (79)

we can decompose the network response into frequency
wise semi-stable and semi-sectorial edge contributions.

Lemma 5. Jnet can be decomposed into edge-wise contri-
butions Je such that

Jnet = B†
+

⊕
e

JeB+ , (80)

if we introduce an edge-wise decomposition α′
nm of αn such

that

αn = −2V ◦
n

∑
m ̸=n

Lnmα′
nm. (81)

Proof. The fundamental strategy is to collect the terms
that represent each edge. In each of the four blocks of
Jnet, the off diagonal matrix elements naturally have
an edge associated to them. The diagonal elements of
K◦ can be written as a sum of edge-wise contributions
K◦

nn = −|V ◦
n |2
∑

m̸=n Lnm. The σ◦ can be written as
σ◦

n =
∑

m ̸=n K◦
nm − |V ◦

n |2
∑

m ̸=n Lnm. We then intro-
duce a similar decomposition for 1

2α times V ◦, writing
1
2 αnV ◦

n = −|V ◦
n |2
∑

m̸=n Lnmα′
nm. Now, the contributions

to the matrix elements of Jnet associated to an edge
e = (n, m) all live on the rows and columns associated
to n and m. Thus, we can place them in a 4×4 matrix Je

using the matrices Pe of (28) that pick out exactly those
rows and columns.
To collect these edge-wise contributions, we introduce
C ′

nm := v◦
n

v◦
n

(1 + α′
nm) − v◦

m

v◦
n

. Then we can succinctly write
the four by four matrix of elements originating from a
single edge as Je = −LnmR†J̃eR with

J̃e =


1 + α′

nm C ′
nm −1 0

C
′
nm 1 + α′

nm 0 −1
−1 0 1 + α′

mn C ′
mn

0 −1 C
′
mn 1 + α′

mn

 . (82)

and R := diag(v◦
n, v◦

n, v◦
m, v◦

m). With this (80) can be
verified by straightforward calculation, collecting all terms
associated to each edge.

As Jnet, and the Je, are Hermitian, their numerical range
is on the real axis. They are (semi-)sectorial, if and only if
they are (semi-)definite. In the phase stability theorems,
it is assumed that the transfer matrix G(ϵ+) has phase
center zero. From (75) we see that this implies that Jnet

and thus Je have to be positive semi-definite.

Lemma 6. Je is positive semi-definite, hence semi-
sectorial, if

|φ◦
n − φ◦

m| <
π

2 ∀ e = (n, m) ∈ E , (83)

α′
nm ≥ V ◦

m

V ◦
n cos(φ◦

n − φ◦
m) − 1 . (84)

Proof. This can be verified with a straightforward calcu-
lation, e.g., using the Schur complement lemma.

The edge-wise decomposition of αn leaves us with the
freedom to weight the α′

nm freely, as long as they satisfy
(81). The tightest bound is achieved by weighting them



IEEE TRANSACTIONS ON POWER SYSTEMS 10

proportional to the bounds derived in (84). However, we
can achieve a much more concise node-wise condition for
the αn, which are actual dynamical parameters of the
nodal actors.

Lemma 7. T net(s) can be decomposed into semi-stable
frequency-wise sectorial Te as

T net(s) = Ũ †B†
+

⊕
e

Te(s)B+Ũ , (85)

if αn ≥ αtheory
n , i.e., (5) holds.

Proof. The Te(s) are given by

Te := 1
2s

Je . (86)

According to Lemma 6, (83) and (84) imply frequency-wise
semi-sectorial Je and thus Te. The factor 1/s makes them
semi-stable, because the pole is at zero and the rank left
constant along the contour. Using the definition of α′

nm we
see that (84) can always be satisfied if αn ≥ αtheory

n .

As
⊕

e Te(s) only depends on s through scaling by a
common factor, we also immediately have that its rank is
constant along the contour. Thus, T net(s) is semi-stable
frequency-wise semi-sectorial. On s ∈ j(ϵ+, ∞] the phases
of the Te(s) are simply: ϕ(Te) = − π

2 = ϕ(Te). on the
quarter circle of radius ϵ+ from jϵ+ to ϵ+, they rotate to
0.
In conclusion, (5) ensures semi-stable frequency-wise sec-
torial T net(s) with a DC phase center of 0, which is a pole,
and all phases − π

2 at s ∈ j(R \ Ω).

C. Putting everything together

Proof. We can now apply Proposition 3 to the system
given by (76), with H = T nod =

⊕
n Tn(s), B = B+Ũ ,

and G = T net = B†⊕
e Te(s)B. We have shown in

the previous sections that with (3)-(5), (i) the Tn in (2)
and (60) are in RH∞ (hence stable) and frequency-wise
sectorial according to Lemma 4; (ii) the Te in (86) are semi-
stable frequency-wise semi-sectorial according to Lemma
6. They are also semi-stable along the shared indented
imaginary axis because they share the same poles. Finally,
G has constant rank along the contour, because it depends
on s only by a prefactor 1/s.
We now proceed to show that (35)-(38) hold. Equation
(35) is fulfilled for (3)-(4), as ϕ(Tn) > −π/2 and ϕ(Tn) <

π/2. Equation (36) is fulfilled, as ϕ(Te) = − π
2 = ϕ(Te).

Similarly, the combined phases of T net and T nod lie within
(−π, 0) at all s ∈ j(R \ Ω), hence (37) and (38) hold. This
concludes the proof.

As Te have phase − π
2 at all non-zero frequencies, the

phases of Tn need not be contained in the open right half
plane. However, T̂n > 0 is sufficient for our examples below
and gives the most concise conditions.

...
...

Figure 4: Block diagram representation of the system
considered. Block H is the nodal response to the lines’
output, and block G is the lines’ response to the nodes’
dynamics.

Appendix E
Proof of Proposition 3

A. Preliminaries
Let us recall two properties of W ′ that will prove useful
later on. First, it follows from the definition of W ′ that

W ′(B†MB) ⊆ (W ′(M) ∪ 0) , (87)

for any M ∈ Cm×m and B of appropriate size, and
therefore,

ϕ(B†MB) ≤ ϕ(M) , ϕ(B†MB) ≥ ϕ(M) . (88)

Second, for a block diagonal system M =
⊕

e Me, the
numerical range is the convex hull of the blocks’ numerical
ranges [37, Property 1.2.10]:

W (M) = Conv (W (M1), ..., W (ME)) . (89)

Thus, if M is semi-sectorial,

ϕ(M) = max
e

ϕ(Me) , ϕ(M) = min
e

ϕ(Me) . (90)

With this toolbox, we are now ready to prove our main
result. The proof of Proposition 3 relies on the four
following Lemmas.

Lemma 8. Let T1, ...,TN be stable transfer functions.
Then T (s) =

⊕
n Tn(s) is stable.

Proof. The transfer function T (s) is stable, because the
set of its poles is the union of the poles of its blocks.

Lemma 9. Let T1, . . . ,TN be frequency-wise sectorial
transfer functions. Then, T (s) =

⊕
n Tn(s) is frequency-

wise sectorial if and only if

max
n

ϕ (Tn(s)) − min
n

ϕ (Tn(s)) < π , (91)
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for all s ∈ j[0, ∞], cf. (35).

Proof. Due to (89), we have that W (T ) is the convex hull
of all W (Tn). Therefore, if (91) is satisfied for all, W (T )
is contained in a sector of angle δ(T ) < π. Furthermore,
as none of the W (Tn) contain the origin, W (T ) does not
contains the origin. We conclude that T is frequency-wise
sectorial. Similarly, if T is frequency-wise sectorial, then
none of the W (Tn) contains the origin, and they all lie
in a sector of angle smaller than π and (91) holds. All of
the above holds for any s ∈ j[0, ∞], which concludes the
proof.

Lemma 10. Let T1, ..., TE be semi-stable transfer func-
tions and let us define T (s) =

⊕
e Te(s). Let B be a

complex matrix of appropriate dimensions. Then both T (s)
and B†T (s)B are semi-stable.

Proof. The transfer function T (s) is semi-stable, because
the set of its poles is the union of the poles of its blocks.
As the matrix B cannot introduce new poles, the poles of
B†T (s)B form a subset of the poles of T (s). Therefore,
B†T (s)B is semi-stable.

Lemma 11. Let T1, ..., TE be frequency-wise semi-sectorial
transfer functions and let us define T (s) =

⊕
e Te(s).

Assume further that

max
e

ϕ(Te(s)) − min
e

ϕ(Te(s)) ≤ π , (92)

for all s ∈ jR \ jΩ, where jΩ is the union of the poles of
T1, ..., TE that lie on the imaginary axis, cf. (36). Assume
that T1, ..., TE are all frequency-wise semi-sectorial, and
assume furthermore that they are semi-sectorial along the
indented imaginary axis avoiding the poles of all Te(s) for
indents smaller than some finite ϵ∗. Finally, assume that
B†T (s)B has constant rank along this indented imaginary
axis for some constant complex matrix B of appropri-
ate dimensions. Then B†T (s)B is frequency-wise semi-
sectorial.

Remark: T (s) is covered with B = I.

Proof. First observe that if a meromorphic Te(s) has
constant rank r on a contour, it has constant rank on any
infinitesimal deformation of the contour. A matrix of rank
r has a minor of order r with non-zero determinant, and
the determinants of all minors of order larger than r are
zero. As the minors are meromorphic functions, they are
either identically zero, or their zeros are isolated points.
Thus the rank can only change at isolated points of the
meromorphic function. As the rank is constant on the
contour, none of these points can be on the contour and
we can deform the contour avoiding these points.
Take an ϵ < ϵ∗ such that for all ϵ′ ≤ ϵ, the imaginary axis
with ϵ′ indentation at jΩ does not hit a rank changing
point of any Te(s), e ∈ {1, ..., E}.
By assumption, for all e ∈ {1, ..., E}, Te(s) is semi-sectorial
and has constant rank on this ϵ-indented imaginary axis
(contour).

Combining (87), (89), and (92), semi-sectoriality of
T1(s), ..., TE(s) implies semi-sectoriality of B†T (s)B, for
s ∈ jR.
Furthermore, by assumption, B†T (s)B has constant rank
along the ϵ-indented imaginary axis.
Altogether, the above implies that B†T (s)B is frequency-
wise semi-sectorial, which concludes the proof.

B. Proof of Proposition 3
Proof. By Lemma 8, H =

⊕
n Tn is stable. By Lemma 9,

H is frequency-wise sectorial if (35) holds. By Lemma 10,
G = B†⊕

e TeB is semi-stable. By Lemma 11, G is
frequency-wise semi-sectorial, if (36) and the constant
rank condition hold.
Using one more time the convex hull property (89), in par-
ticular (90), and the subset property (87), the assumptions
(37)-(38) yield

sup
s/∈jΩ

[
ϕ

(⊕
n

Tn

)
+ ϕ

(
B†
⊕

e

TeB

)]
< π , (93)

inf
s/∈jΩ

[
ϕ

(⊕
n

Tn

)
+ ϕ

(
B†
⊕

e

TeB

)]
> −π , (94)

where Tn and Te are functions of s. These are the phase
conditions (33)-(34) of Theorem 2. All in all, the system
(
⊕

n Tn) #
(
B†⊕

e TeB
)

then satisfies all assumptions
and conditions of Theorem 2 and is therefore stable, which
concludes the proof.
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