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Abstract—Guaranteeing the stability of future,1

inverter-dominated power grids is a central challenge2

for grid operators, especially when devices from3

multiple vendors interact. In this work, we derive4

novel conditions that guarantee small-signal stability.5

They are independent of device specifics and are6

locally verifiable in the neighborhood of each bus. The7

inverters can be highly heterogeneous and implement8

any control law of frequency, voltage amplitude, active9

and reactive power, and internal states. The only10

structural assumptions we make are that the control11

implements an exact droop relationship between12

voltage magnitude and reactive power, and that we13

have a constant R/X ratio throughout the grid. When14

applied to established models of control designs, we15

reproduce and generalize established results.16

To achieve this, we build on the recent small-phase17

theorem and adapt it to networked systems. The central18

novelty on the grid modeling side is the use of complex19

frequency to capture the relevant dynamical behavior20

of the inverters. While the conditions are sufficient21

but not necessary, we find that they are not overly22

conservative in practice. Furthermore, we find that23

they can identify individual inverters that are the cause24

of instability.25

Index Terms—grid-forming control, droop control,26

complex frequency, voltage source converter, small-27

signal stability28

I. Introduction29

The analysis of small-signal stability in multi-machine30

power grids is a central topic in power grid analysis. The31

main result of the seminal paper of [1] was to give condi-32

tions under which multiple machines and loads, modeled33

as oscillators, are stable to small perturbations.34

Since then, a plethora of results from power engineering35

[2], control theory [3]–[5] and theoretical physics [6], [7]36

have expanded our understanding of the small signal37

stability of power systems. However, it remains an active38

topic of research [8]–[11]. In recent years, the topic has39

gained renewed interest with the introduction of grid-40

forming converters, which are expected to independently41

stabilize the synchronous operation of future power grids42
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with high renewable content [12]. Grid-forming control 43

remains an active topic of research, and additionally, often 44

detailed device models are not published by the vendor 45

[13]–[15]. There is a wide range of stability results for 46

concrete control strategies, as reviewed in [16]. However, 47

most of them are ad hoc and do not generalize naturally 48

to other control schemes. 49

In this paper, we derive a decentralized stability condition 50

based on the transfer functions that describe how a grid- 51

forming node’s frequency and relative voltage velocity 52

react to deviations from power, reactive power, and voltage 53

set points. Remarkably, our results are technology-neutral 54

and apply to all grid-forming nodal actors for which the 55

response to reactive power and voltage set point deviations 56

is proportional, which is an established principle, see for 57

example [17], [18]. 58

The variables used in this work correspond to working with 59

the complex frequency [19] and describing the network 60

state using time-invariant variables that nevertheless fully 61

characterize the operating state at the desired frequency 62

[20], [21]. Such variables are highly effective for identifying 63

grid-forming behavior in the grid [22]. As we will see, 64

an advantage of working in these quantities is that the 65

transfer matrices do not depend on arbitrary quantities 66

such as phase angles. The resulting stability conditions are 67

more explicit, simpler and more easily interpreted than, for 68

example, those of [4], [8], [11]. In particular, the transfer 69

matrices often do not explicitly depend on the operation 70

point around which we linearize, and the conditions can 71

be mapped back to system parameters immediately. We 72

demonstrate this by recovering several classical results as 73

special cases. 74

As in [8], [11], the central ingredient to our result is the 75

small phase theory introduced in [23]. A companion paper 76

to this work [24] explores the application of this approach 77

to the broad class of adaptive dynamical networks [25], 78

and demonstrates that these methods can match necessary 79

conditions in that setting. This approach can be seen as 80

an extensive generalization of passivity. Passivity-based 81

methods have been previously used to derive decentral 82

stability conditions for scalar networked systems [26] and 83

for power grids [4], [27]. We improve on these results by 84

giving more broadly applicable conditions that are fully 85

decentralized and less conservative. Similar results were 86

independently obtained in [28], however, only for a heavily 87

restricted class of models when compared to our results. 88
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II. Statement of the main result89

We begin by presenting the key assumptions and the main90

result, using the bare minimum of notation and concepts91

necessary to state them. For clarity, we first treat lossless92

systems. The case of homogeneous ratio of resistance to93

reactance is treated in section V.94

We assume a lossless grid with admittance Y . Define Ỹ :=95

−jY , a negative semi-definite Laplace matrix with Ỹnm ≥96

0 for all n ̸= m. Denote nodal complex voltages v = vd +97

jvq, a vector with components98

vn(t) = Vn(t)ejφn(t) , (1)

with phase φn and amplitude Vn. The nodal current99

injections are ı = Y v, and the nodal power injections100

pn + jqn = vnın.101

Quantities at the operating point are written with a super-102

script ◦. In the co-rotating frame with the grid’s nominal103

frequency, the operating point is given by constant v◦
n that104

induce V ◦
n , φ◦

n, and a power flow solution p◦
n, q◦

n matching105

the set point.106

We assume that the dynamics of the nodes can be for-107

mulated in terms of the complex frequency ηn := v̇n/vn108

(see [19], [20] for details). Its real part ϱn = V̇n/Vn is109

the relative amplitude velocity, and its imaginary part,110

ωn = φ̇n, is the angular velocity, which is proportional111

to the frequency. Without loss of generality, we take the112

complex frequency at the operation point to be equal to113

zero: ω◦ = ϱ◦ = 0. In practical terms, this assumption114

implies that all nodes have some amount of grid-forming115

capability.116

We can understand the behavior of a broad class of117

dynamical actors in power grids by considering how their118

complex frequency reacts to changes in the network state.119

Near the power flow solution of interest, we can consider120

the linearized response in terms of the transfer functions.121

From this perspective, grid-forming actors take the current122

(or power) as input and supply a voltage as output.123

The following analysis focuses on systems that implement124

a droop relationship between the voltage Vn and the125

reactive power qn:126

q̂n := qn + αnVn, (2)

where αn ∈ R denotes the proportionality coefficient. This127

is the only assumption made in the subsequent analysis.128

Consequently, all models that satisfy this typical condition129

[18], including those with additional control mechanisms130

such as p–f droop [5], are also encompassed.131

For the transfer function representation, we use pn, the132

shifted reactive power q̂n as the nodal inputs, and obtain133

four transfer functions T ••
n (s) ∈ C that describe the nodal134

behavior near the power flow of interest:135 [
ϱn

ωn

]
= −

[
T ϱq̂

n T ϱp
n

T ωq̂
n T ωp

n

] [
∆q̂n

∆pn

]
=: −Tn

[
∆q̂n

∆pn

]
, (3)

where all quantities except αn depend on the Laplace136

frequency s.137

Following [20], the matrix elements of Tn(s) are expected138

to only depend on p◦, q◦, and V ◦, but not on the complex139

voltage v◦
n directly. As v◦

n is only defined uniquely up to 140

phase, this is a key advantage of working in terms of phase- 141

shift-invariant quantities like p, q, and η rather than, say, 142

v̇, v, and ı, ı. This mirrors the choice of power and polar 143

coordinates in [4]. Our main result is: 144

Proposition 1 (Small-signal stability of power grids with 145

V and q droop). Consider a lossless power grid with 146

admittance matrix Y and an operating point with voltage 147

phase angles φ◦
n and magnitudes V ◦

n , and Tn(s) the transfer 148

function matrices from q̂n, pn, to ϱn and ωn for some αn. 149

The operating point is linearly stable if |φ◦
n −φ◦

m| < π/2 for 150

all n and m connected by a line, the Tn(s) are internally 151

stable, and for all s ∈ [0, ∞] it holds 152

ℜ(T ϱq̂
n ) + ℜ(T ωp

n ) > 0 , (4)

ℜ(T ϱq̂
n ) · ℜ(T ωp

n ) >
1
4

∣∣∣T ϱp
n + T

ωq̂

n

∣∣∣2 , (5)

αn ≥ 2
∑
m

Ỹnm
V ◦

m

cos(φ◦
n − φ◦

m) . (6)

Proof. We provide the proof in Appendix D. 153

We restrict our analysis to systems for which there is a 154

choice of αn that eliminates Vn as a nodal state variable 155

by absorbing it into q̂n. Otherwise, the first two conditions 156

might fail for small s. The reason for this is that Vn is 157

a local state variable at the bus, while V̇n is an output. 158

This is in contrast to φn, which does not appear [20]. 159

This mismatch makes the Hermitian part of the transfer 160

function matrix non-definite for small s. Choosing αn such 161

that it eliminates Vn as a nodal state variable makes 162

Tn well-behaved. This can easily be achieved for many 163

models of power grid actors [5], [18] and notably also covers 164

all systems analyzed in [4]. The precise model class is 165

discussed in more detail in Appendix C. From here on, 166

we assume that αn is chosen in this way. An alternative 167

approach is to restrict the model class such that the 168

transfer function matrix remains well-behaved, e.g., by 169

requiring T ϱp
n = T ωq̂

n = 0. This alternative approach has 170

been explored independently in depth in [28]. 171

Our conditions align well with established practice in the 172

design of grid-forming power grid actors. The diagonal 173

terms T ωp
n and T ϱq̂

n implement a stabilizing reaction of 174

phase and amplitude to active and reactive power devi- 175

ations, respectively. Equations (4)-(5) together imply that 176

these transfer functions need to have negative real parts 177

and dominate the dynamics. In addition, (5) quantifies 178

how large the crosstalks T ωq̂
n between reactive power and 179

frequency, and T ϱp
n between active power and voltage 180

amplitude, may be, without endangering stability. 181

From the physics of the interconnection, we get a third 182

condition: that the stabilization of the amplitude is suf- 183

ficiently strong relative to the coupling on the network, 184

as quantified in (6). This condition relates the nodal V -q 185

droop ratio αn to local grid conditions. Note in particular 186

that the lower bound in (6) can be negative, indicating 187

that local grid conditions are so strong that even miscon- 188

figured droop relationships can be tolerated. 189
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The remainder of this paper is structured as follows. In190

Section III, we derive what our main results imply in191

concrete systems and compare them with the results of192

[4] and [7]. We then present numerical results for the193

IEEE 14-bus system in Section IV, which demonstrate194

that our conditions can be tight in this setting. Finally,195

we present the generalization to lossy grids in Section V196

and provide a discussion and outlook in Section VI. The197

Appendix includes the relevant mathematical definitions,198

derivations, and proofs.199

III. Concrete systems200

We will now demonstrate that the conditions of Proposi-201

tion 1 are viable to study the behavior of a wide range of202

typically considered grid models, and often can even im-203

prove on established theoretical considerations. We begin204

with generalized droop laws.205

A. Generalized droop206

The most general dynamical droop law relating voltage,207

frequency, active and reactive power is of the form:208

φ̇ = c1∆p + c2∆q + c3∆V, (7)
V̇ = c4∆p + c5∆q + c6∆V. (8)

Our assumption on exact droop behavior implies c6/c5 =209

c3/c2 =: α, and we can re-parameterize this as210

φ̇ = −Cω
p ∆p − Cω

q ∆q̂, (9)
V̇ = V ◦ ·

(
−CV

p ∆p − CV
q ∆q̂

)
, (10)

where q̂ := q + αV . This is also the most general form211

that the linearized equations of a grid-forming device212

with V and q droop can take when neglecting internal213

dynamics [20]. The class of models considered in [5] and214

[4] Propositions 5 and 6 is a special case of the class studied215

in this section.216

In this section, we discuss and contrast the theoretical217

results. Below, in Section IV, we will show that our218

conditions are also remarkably exact in this model class.219

The transfer matrix for (9), (10) is220

TTT n(s) =
[
CV

q CV
p

Cω
q Cω

p

]
, (11)

and (4)-(5) become221

CV
q + Cω

p > 0 (12)

CV
q · Cω

p >
1
4
(
CV

p + Cω
q

)2
. (13)

The well-established droop principles of controlling φn222

with −∆pn and Vn with −∆qn and −∆Vn (see for ex-223

ample [17], [18]) are reflected in T ωp
n > 0 and T ϱq̂

n > 0.224

Equations (12)-(13) tell us that these coefficients need to225

have the same sign and need to be positive. Equation (13)226

further quantifies that cross-coupling, reflected by T ϱp
n and227

T ωq̂
n , needs to be sufficiently small in comparison.228

As long as the established main couplings CV
q , Cω

p are229

positive, there is a band of stable cross couplings given by230

Cω
q ∈ −CV

p + 2
√

CV
q Cω

p × (−1, 1) (14)

and vice versa with Cω
q ↔ CV

p . 231

The case considered in [4] Proposition 5 corresponds to 232

CV
p = Cω

q = 0. Then our stability conditions simplify 233

to CV
q > 0 and Cω

p > 0 together with the condition on 234

α. The conditions presented here improve upon those in 235

Proposition 5 of [4] for this model class. They require 236

that Cω
p and αn are larger than a positive constant that 237

depends on the entire network, and assume the signs of 238

CV
q and Cω

p from the outset. In contrast, we find no bound 239

other than the ‘sign’ on the C, and our lower bound for 240

αn is a local quantity that can even become negative. We 241

will illustrate that this occurs in practical grid situations 242

in the section on numerical experiments. 243

B. Third-order models 244

We now compare our results to established conditions in 245

the widely studied case of second-order phase dynamics 246

and voltage control. For this purpose, we employ a single 247

internal variable xn that represents the phase velocity 248

(angular frequency) relative to the nominal frequency. For 249

purposes of regularization, we further introduce a first- 250

order feed-through term with coefficient δn: 251

φ̇n = xn − δn∆pn , (15)
τpn

ẋn = −Dnxn − kpn
∆pn , (16)

τqn V̇n = −∆Vn − kqn∆qn . (17)

At δn = 0 we have pure second-order phase dynamics. 252

We adapted the notation of the droop-controlled inverter 253

model of [5], which we recover at δn = 0. With kqn
= α−1

n , 254

the transfer matrix is given by 255

Tn(s) =
[

(V ◦
n αnτqn)−1 0

0 δn + kpn

sτpn +Dn

]
, (18)

assuming τpn > 0 and τqn > 0. A similar model is the 256

third-order model for synchronous machines [18], where 257

the voltage dynamics are slightly different: 258

τVn
V̇n = −∆Vn − Xn∆(qn/Vn) , (19)

with transient reactance Xn ≥ 0. The transfer matrices of 259

both models are identical via the invertible mapping 260

Xn = V ◦
n kqn

(
1 + 2kqnq◦

n

V ◦
n

)−1
, (20)

τVn
= τqn

(
1 + 2kqn

q◦
n

V ◦
n

)−1
. (21)

This transfer matrix also represents the dynamics of vir- 261

tual synchronous machines [29], quadratic droop control 262

[30], reactive current control [10], and some controls with 263

adaptive inertia [31] through similar mappings. 264

For the nodal transfer matrices to be stable as required 265

by Proposition 1, we need Dn > 0. Conditions (4)-(5) are 266

fulfilled at all s as long as δn > 0, kpn
> −δnDn, and 267

αn > 0. 268

At δn = 0 and s = j∞, we have T ωp
n = 0 and violate 269

(5). However, this is sufficient to establish semi-stability at 270

δn = 0, because stability holds for arbitrarily small δn and 271
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parameter CV
q,n Cω

p,n CV
p,n Cω

q,n

lower 0.0 0.0 -0.1 −CV
p,n −

√
CV

q,nCω
p,n

upper 1.0 1.0 0.1 −CV
p,n +

√
CV

q,nCω
p,n

Table I: Node parameters were drawn independently for
all nodes and from random uniform distributions between
“lower” and “upper”, such that conditions (12)-(13) hold.

the eigenvalues of the system’s Jacobian are continuous272

functions of the parameters. Furthermore, including gain273

information allows to treat this system at δn = 0, too [24].274

In [5], stability conditions for this model were given in275

terms of matrix inequalities with a similar interpretation276

to our analysis: the diagonal couplings T ϱq̂
n and T ωp

n need277

to be strong in the positive direction, while the off-diagonal278

cross-couplings need to be bounded relatively. We obtain279

a similar result, which, however, is decentralized and thus280

easier to analyze and implement.281

In [5], it was also observed that decreasing kqn
can in-282

crease stability by weakening the cross-coupling. This is283

quantified in our lower bound for αn = k−1
qn

in (6):284

k−1
qn

≥ 2
∑
m

Ỹnm
V ◦

m

cos(φ◦
n − φ◦

m) . (22)

To our knowledge, this lower bound is entirely novel and285

has not previously been reported in the literature. In [7],286

[32], under the assumption that all nodes in the system287

are of the same functional form, a bound for kqn
was also288

derived. This bound can be tighter or looser than ours,289

depending on the operating points.290

IV. Simulations291

To test our stability conditions, we simulated the stability292

of the IEEE 14-bus system equipped with grid-forming293

inverters following the generalized droop control given in294

(9)-(10).295

First, we tested the condition given in (6). We stressed296

the grid by simulating imperfect active and reactive power297

provision to test how the condition performs under re-298

alistic settings, such as voltage amplitudes moderately299

deviating from the nominal values. We varied all p◦ and300

q◦ randomly by up to 10% around the IEEE 14-bus301

standard values and optimal values, respectively. To obtain302

heterogeneous parameters, we drew them from random303

uniform distributions at each node, see Table I.304

We then computed the sufficient bounds for the αn to be305

stable, αtheory
n , using (6). Setting all inverters to αtheory

n ,306

we then systematically varied one inverter setting to find307

the critical value αcrit
n necessary for stability.308

We see in Figure 1 that the theoretical prediction is almost309

perfect across all buses. We also observe that αn can310

locally be negative. This demonstrates the power of our311

theoretical analysis to account for local grid conditions in312

a far more sophisticated manner than previous analyses. In313

fact, in the system tested, the errors between the predicted314

and simulated αn are on the order of machine precision,315

except when αcrit
n approaches zero.316

Figure 1: Numerical small-signal stability of the IEEE
14-bus system. The predicted αtheory closely matches the
numerically simulated stability threshold.

Figure 2: Trajectories for αn = αtheory
n (upper) and the

case where α1 < αtheory
1 . Improperly configured voltage

droop at one node causes a slow voltage collapse.

Figure 2 illustrates example trajectories for a stable system 317

where all nodes are at the αtheory
n , and an unstable system 318

where one node (bus 1) violates the theoretical stability 319

guarantee. We observe that the violation leads to a slow 320

voltage collapse within the system. As only one node 321

violates our theoretical bound in this system, our bounds 322

successfully pinpoint the origin of instability in this case. 323

Finally, we also tested condition (5) for the same setup 324

while keeping the active and reactive power set-points 325

fixed. For the experiment, we set αn = αtheory
n at each node 326

and varied the strength of the cross-couplings CV
p and Cω

q 327

at individual buses. The results for bus 3 are shown in Fig. 328

3, all other buses exhibit qualitatively similar behavior. 329

The stability conditions accurately capture the boundary 330

of stability when the cross-couplings are of comparable 331

magnitude to the main couplings CV
q and Cω

p , which is 332

expected for a well-tuned inverter. In the special case 333

CV
p = Cω

q , the conditions are almost exact. They become 334

conservative only when the cross-coupling terms differ 335

significantly, which corresponds to an atypical control 336

setting, as such terms are normally designed to be zero 337

or close to zero. 338
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Figure 3: Numerical small-signal stability of the IEEE
14-bus system in terms of the cross-couplings CV

p , Cω
q at

node 3. Green and black dots indicate numerical linear
stability and instability, respectively, for each parameter
configuration. The shaded area indicates our sufficient
condition.

V. Lossy lines339

The principles of controlling V with q̂ and φ with p, which340

are quantified by Proposition 1, are valid for lossless trans-341

mission lines. In the presence of losses, similar principles342

hold with q̂ and p getting mixed depending on the ratio343

of resistance R and reactance X.344

Assuming constant R/X ratio for all lines, we define the345

angle κ through tan κ := R/X. We now generalize the346

rotated admittance matrix by defining Ỹ := −je−jκY , a347

negative semi-definite Laplace matrix with Ỹnm ≥ 0 for all348

n ̸= m. The rescaled rotation matrix O(κ), and rotated349

transfer function matrix T̃n are defined as350

O(R/X) :=
[

1 −R/X
R/X 1

]
, (23)

T n(s) := T̃n(s) O(R/X). (24)

Note that O cos κ is a rotation matrix. In the lossless case,351

we have O = I, the identity, and T̃ n = T n. The nodes now352

obey353 [
ϱn

ωn

]
= −T̃ n(s)

([
∆qn

∆pn

]
+ O

[
αn∆Vn

0

])
. (25)

This way, the conditions of Proposition 1 for T n and αn354

also hold for lossy grids, with an analogous proof, because355

the admittance can be rotated real for the analysis of the356

transmission lines’ transfer matrix.357

What does this parametrization mean in practice? To358

interpret the conditions on T n, consider that it can be359

seen as a transfer matrix from the lines’ output360

O−1
[
∆qn

∆pn

]
+
[
αn∆Vn

0

]
(26)

to
[
ρn ωn

]⊺. This is a droop between q̂ = q + αV as361

before, and p̂ = p + αV R/X instead of just p, i.e., the362

control is adapted to the R/X ratio. This mirrors the363

control design where current and power are also rotated 364

by the angle defined by R/X [27]. 365

VI. Discussion and Conclusion 366

In this paper, we derived fully decentralized small-signal 367

stability conditions for power grids under the assumption 368

of V and q droop, as well as a homogeneous R/X ratio for 369

the lines. The preceding results provide a simple charac- 370

terization of small-signal stability of heterogeneous grids 371

in terms of transfer matrices between power mismatch on 372

the input side, and frequency and voltage velocity on the 373

output side. Such transfer function-based specifications are 374

natural for the design and specification of decentralized 375

power grid control strategies, and could potentially be 376

directly encoded in grid codes [33]. This is especially 377

interesting as the transfer functions we are concerned with 378

can be measured experimentally [22]. 379

The type of conditions derived here are robust in the 380

sense that, if the numerical range of a nodal transfer 381

matrix is bounded away from zero for all s on the contour 382

(see proof), a perturbation of the transfer matrix of H∞ 383

norm smaller than the bound can not make the system 384

unstable. However, as we have to assume an exact droop 385

relationship, this robustness does not yet easily extend to 386

actual system parameters. 387

We expect that our results can be adapted to load models, 388

as the complex frequency approach [19] can also capture 389

load models and grid-following control [34]. A starting 390

point for an extension to line dynamics is given in [28]. An 391

alternative approach is to absorb the line dynamics into 392

the node dynamics in the case of a homogeneous R/X, as 393

they are essentially a low-pass filter on the nodal power 394

flow, see Appendix B of [21]. 395

The most significant challenge for our approach is to 396

accurately account for non-droop-like reactions to voltage 397

amplitude deviations. This also prevents us from directly 398

applying the theory to conventional models in the presence 399

of losses. Naively adding in additional voltage dynamics 400

on the nodal side fails due to the sectoriality constraints. 401

Similarly, models that do not have a pass-through like δn 402

in (15) fail our conditions at infinite imaginary s. 403

Lastly, dVOC [35], [36] is covered by our theorem only in 404

the unloaded case. To address these limitations, it will be 405

necessary to accurately incorporate gain information into 406

the stability analysis. The companion paper [24] explores 407

this in the context of adaptive dynamical networks. We 408

leave this extension of the methods introduced in this 409

paper to future work. 410
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Appendix A426

Notational Preliminaries427

To prove the above result, we begin by expanding on the428

notation used above. We want to consider the small-signal429

stability of power grids with a heterogeneous mix of grid-430

forming actors. The N nodes are indexed n and m, 1 ≤431

n, m ≤ N . The E edges in the set of edges E are indexed by432

ordered pairs e = (n, m), n < m. For any nodal quantity433

xn, we denote the overall N -dimensional vector by x. We434

write [x] for the diagonal matrix with xn on the diagonal:435

[x]nm = δnmxn, where δnm = 1 if n = m, and 0 else. In436

general, matrices are uppercase bold, e.g., A, and vectors437

are lowercase bold. We denote with 1 the constant vector438

1n = 1, so the identity matrix is [1] = I, and similarly for439

0 and [0].440

We denote the imaginary unit j, the complex conjugate of441

a quantity z by z, the transpose of a vector or matrix A442

as A⊺, and the complex transpose by A†.443

We will often have two quantities per node, e.g., zn and444

zn. Stacking the vector of nodal quantities is written as445 [
z
z

]
. (27)

We will also often be looking only at the components446

associated with a single node n in such a stacked vector. To447

this end, we introduce the matrix Pn which selects these448

entries449 [
zn

zn

]
= Pn

[
z
z

]
, (28)

and its transpose P †
n. Note that Pn are isometries, and450

P †
nPn is an orthogonal projection matrix.451

Given a set of nodewise matrices An, the matrix built452

from them with the direct sum
⊕

then acts on our stacked453

vector as:454 ⊕
n

An

[
z
z

]
:=
∑

n

P †
nAnPn

[
z
z

]
, (29)

While the matrix representation of
⊕

n An is not block455

diagonal on the stacking
[
z z

]⊺, it is block diagonal when456

stacking
[
z1 z1 z2 z2 . . . zn zn

]⊺.457

We also introduce the matrix Pe that selects the states458

related to the edge e from our stacked vector:459

Pe

[
z
z

]
= P(n,m)

[
z
z

]
=


zn

zn

zm

zm

 . (30)

The Pe are isometries, but P †
e Pe are not mutually orthog- 460

onal. Therefore, a matrix built from 4 × 4 matrices Ae as 461∑
e

P †
e AePe , (31)

is not block diagonal. However, it can be written as the 462

projection of a block diagonal matrix
⊕

e Ae and we write: 463∑
e

P †
e AePe = B†

+
⊕

e

AeB+ , (32)

for an according 4E × 2N matrix B+ that fulfills this 464

equation. 465

Appendix B 466

Phase stability preliminaries 467

Our results are based on the Generalized Small Phase 468

Theorem of Chen et al. [23]. We prove a straightforward 469

proposition stating that if the transfer matrices of the 470

system under consideration have a block structure, the 471

global stability conditions can be decomposed into local 472

conditions. An immediate application are networked sys- 473

tems that consist of node and edge variables that are 474

coupled according to a graph. 475

Using this proposition, we give a precise statement of 476

the stability conditions for a power grid of general grid- 477

forming grid actors with V and q droop as introduced 478

above. 479

For completeness, we begin by recalling the Small Phase 480

Theorem of [23], which provides conditions for the stability 481

of the connected system G#H, in terms of the numerical 482

range W and the angular field of values W ′ [37, Sec. 1.0, 483

Def. 1.1.2], [38], [39], defined for a matrix M ∈ CN×N as 484

W (M) =
{
z†Mz | z ∈ CN , z†z = 1

}
, (33)

W ′(M) =
{
z†Mz | z ∈ CN , z†z > 0

}
. (34)

When the numerical range lies in a half complex plane, 485

we introduce the notion of sectoriality. Assume that 0 is 486

not in the interior of W (M). Define ϕ(M) and ϕ(M) as 487

the maximum and minimum arguments of the elements of 488

such a W (M), and δ(M) := ϕ(M) − ϕ(M). Then the 489

matrix M is 490

• semi-sectorial if δ(M) ≤ π; 491

• quasi-sectorial if δ(M) < π; 492

• sectorial if 0 /∈ W (M). 493

Notice that a non-sectorial matrix M is semi-sectorial if 494

0 is on the boundary of W (M). 495

Let RHm×m
∞ denote the set of m × m transfer matrices 496

of real-rational proper stable systems. For these systems, 497

all the poles of any H(s) ∈ RHm×m
∞ (should there be 498

any) are in the open left-hand side of the plane. A system 499

G ∈ RHm×m
∞ is called frequency-wise sectorial if G(s) is 500

sectorial for all s ∈ jR. A system G(s) is semi-stable if 501

its poles are in the closed left half plane. Take jΩ the set 502

of poles on the imaginary axis, and jR \ jΩ the indented 503

imaginary axis with half-circles of radius ϵ ∈ R around 504

the poles and of radius 1/ϵ around ∞ if it is a zero. 505

These ϵ-detours lie in the right half-plane. We call this 506
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indented imaginary axis “the contour”. A system is semi-507

stable frequency-wise semi-sectorial if G(s) has constant508

rank along the contour and is semi-sectorial on jR \ jΩ.509

The phase center is defined as γ[G(s)] :=510 {
ϕ[G(s)] + ϕ[G(s)]

}
/2, and without loss of generality,511

we assume that γ[G(ϵ+)] := limϵ↘0 γ[G(ϵ)] = 0.512

We can now recall Chen et al.’s Small Phase Theorem.513

Theorem 2 (Generalized Small Phase Theorem, [23]).514

Let G be semi-stable frequency-wise semi-sectorial with jΩ515

being the set of poles on the imaginary axis, and H ∈ RH∞516

be frequency-wise sectorial. Then G#H is stable if517

sup
s∈j[0,∞]\jΩ

[
ϕ(G(s)) + ϕ(H(s))

]
< π , (35)

inf
s∈j[0,∞]\jΩ

[
ϕ(G(s)) + ϕ(H(s))

]
> −π . (36)

Proof. See [23].518

If the system G#H has a block structure, e.g., a net-519

worked distributed power system, we can show the follow-520

ing:521

Proposition 3 (Generalized Small Phase Theorem with522

Block Structure). Consider the system G#H with the523

block structure H =
⊕

n Tn(s) and G = B†⊕
e Te(s)B for524

some B of appropriate dimensions. For each n, let Tn(s) ∈525

RH∞ be frequency-wise sectorial. For each e, let Te(s) be526

semi-stable frequency-wise semi-sectorial individually and527

along the indented imaginary axis, avoiding the poles of all528

Te(s) for indents smaller than some finite ϵ∗. Write jΩ for529

the union of the set of poles on the imaginary axis. Assume530

that G(s) has constant rank along the contour. Then, the531

interconnected system G#H is stable if532

max
n

ϕ (Tn(s)) − min
n

ϕ (Tn(s)) < π , (37)

for all s ∈ j[0, ∞], and533

max
e

ϕ (Te(s)) − min
e

ϕ (Te(s)) ≤ π , (38)

for all s /∈ jΩ, and534

sup
n,e,s/∈jΩ

[
ϕ (Tn(s)) + ϕ (Te(s))

]
< π , (39)

inf
n,e,s/∈jΩ

[
ϕ (Tn(s)) + ϕ (Te(s))

]
> −π . (40)

Remark: H is stable, and its sectoriality is ensured by535

(37). G is semi-stable, and its semi-sectoriality is ensured536

by (38) and the rank condition. Equations (39)-(40) imply537

the stability condition of Theorem 2.538

Proof. We provide the proof in Appendix E.539

Appendix C540

Linear form of power grids with V and q droop541

To make use of Proposition 3, we have to linearize the542

power grid model under investigation into an appropriate543

form. In this section, we show that the power grid can544

be represented as an interconnected feedback system of545

two transfer matrices: T nod#T net. T nod includes all nodal546

transfer matrices from q̂n and pn to ϱn and ωn, as in (3).547

T net represents the network structure and the physics of 548

the coupling, as it takes ϱ and ω as inputs and provides 549

q̂ and p as outputs. The fundamental assumption we 550

make is that the nodes can be modeled as voltage sources 551

that react to conditions in the grid. This assumption is 552

most natural in the context of grid-forming actors, such 553

as power plants or grid-forming inverters. 554

A. Complex frequency notation 555

As noted above, every node has a complex voltage (repre- 556

senting a balanced three-phase voltage) vn = vd,n + jvq,n: 557

vn(t) = Vn(t)ejφn(t) = eθn(t) , (41)

and a complex current ın. The latter is given in terms of 558

the former through the admittance matrix Y : 559

ı(t) = Y · v(t) = −jL · v(t) . (42)

The matrix L := je−jκY ∈ RN×N is a real, symmetric, 560

positive definite Laplacian. We show the proof for lossless 561

grids, where κ = 0. The lossy case goes analogously with 562

a rotation, see Section V. 563

We use a power-invariant transformation from ABC co- 564

ordinates, so that the apparent power is given by Sn(t) = 565

vn(t)ın(t) = pn(t) + jqn(t) with active power pn(t) and 566

reactive power qn(t). 567

Milano [19] suggests writing the nodal dynamics through 568

the time derivative of the complex phase θn, the complex 569

frequency η: 570

ηn(t) = θ̇n(t) , (43)
v̇n(t) = ηn(t)vn(t) (44)

= (ϱn(t) + jωn(t))vn(t) . (45)

We will drop the explicit time dependence (t) from now 571

on. By considering both, the complex equation and the 572

complex conjugate equation, 573

v̇n = ηnvn , (46)
v̇n = ηnvn , (47)

we can switch back and forth between complex and real 574

picture, using a linear transformation. The velocities ϱn, 575

ωn, ηn and ηn are related by: 576[
ηn

ηn

]
=
[
1 j
1 −j

] [
ϱn

ωn

]
= U

[
ϱn

ωn

]
, (48)[

ϱn

ωn

]
= 1

2

[
1 1

−j j

] [
ηn

ηn

]
= 1

2U
†
[
ηn

ηn

]
, (49)

Note that U−1 = 1
2U

†, thus U/
√

2 is a unitary matrix. 577

This means that under U as coordinate transformation, 578

all pertinent properties of linear dynamical systems are 579

retained. 580
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B. A system of grid-forming actors581

We are interested in conditions that guarantee small-signal582

stability of a heterogeneous system of grid-forming actors,583

without strong assumptions on their internal structure. As584

noted above, we assume that we can model the nodes585

as voltages reacting to the grid state. We assume that586

the voltages react in a smooth, differentiable manner, and587

that Vn > 0. Thus, ωn and ϱn are defined, and can be588

chosen as the nodal output variable. Using pn and qn as589

the input that the nodal actor sees from the grid, we can590

write the general form of a node’s behavior in terms of591

three functions rn, on and fx
n :592

ϱn = rn(φn, Vn, pn, qn,xn) , (50)
ωn = on(φn, Vn, pn, qn,xn) , (51)
ẋn = fx

n (φn, Vn, pn, qn,xn) . (52)

Here, xn ∈ Rnvar are internal states of dimension nvar593

that reflect the inner workings of the grid actor, and are594

not visible directly in the output v. Examples include595

generator frequencies, inner-loop DC voltages, or the d-596

and q-components of internal AC quantities.597

We make two assumptions on the form of the functions598

rn, on and fx
n : I) Following [20], we assume that the599

nodal dynamics does not explicitly depend on φn. This600

assumption is justified by symmetry considerations and601

the desire not to introduce harmonic disturbances into the602

grid. II) We assume that the reaction to a deviation in the603

voltage mirrors that of a deviation in the reactive power.604

That is, we assume that near the operation point, rn, on,605

and fx
n only depend on q̂n = qn + αnVn for some real606

αn rather than on both qn and Vn separately. With these607

assumptions, we have:608

ϱn = rn(pn, q̂n,xn) , (53)
ωn = on(pn, q̂n,xn) , (54)
ẋn = fx

n (pn, q̂n,xn) . (55)

C. The linearized nodal response609

We define the coefficients of the Jacobian as610

Jωp
n := ∂on

∂pn
, Jϱq̂

n = ∂rn

∂q̂n
, Jxx

n = ∂fx
n

∂xn
, etc. (56)

We now want to look at the linear response of the nodal611

subsystem around an operating point v◦
n , i◦

n. We assume612

that the operating point satisfies ϱ◦
n = ω◦

n = ẋn = 0.613

Write ∆pn = pn − p◦
n and ∆q̂n = qn − q◦

n + αn(Vn − V ◦
n )614

and assume that x◦
n = 0. The linearized nodal dynamics615

are then616

ẋn = Jxp
n ∆pn + Jxq

n ∆q̂n + Jxx
n xn , (57)

ϱn = Jϱp
n ∆pn + Jϱq̂

n ∆q̂n + Jϱx
n xn , (58)

ωn = Jωp
n ∆pn + Jωq̂

n ∆q̂n + Jωx
n xn , (59)

which we stack as617

ẋn = Jxqp
n

[
∆q̂n

∆pn

]
+ Jxx

n xn , (60)[
ϱn

ωn

]
= Jϱωq̂p

n

[
∆q̂n

∆pn

]
+ Jϱωx

n xn . (61)

The nodal transfer matrix from
[
∆q̂n ∆pn

]⊺ to 618[
ϱn ωn

]⊺ is then just 619

−Tn(s) = Jϱωq̂p
n + Jϱωx

n (s − Jxx
n )−1Jxqp

n . (62)

We can summarize the transfer matrices of all nodes in 620

T nod such that 621[
ϱ
ω

]
= −T nod

[
∆q̂
∆p

]
:= −

⊕
n

Tn(s)
[
∆q̂
∆p

]
. (63)

D. The linearized network response 622

To obtain the full linearized equations, we need the re- 623

sponse of ∆pn and ∆q̂n to variations in the complex angle 624

θn around a given power flow with θ◦
n. 625

This is most easily given in terms of a variant of the 626

complex power and the complex couplings introduced by 627

[21]. We define 628

σn := qn + jpn , (64)

to mirror the definition of the complex frequency [19]. In 629

terms of the usual complex power, this is σn = jSn. This 630

complex power can be expressed in terms of the Hermitian 631

matrix K ∈ CN×N of complex couplings [19], [21]: 632

Knm = vnLnmvm , (65)
σn =

∑
m

Knm . (66)

These quantities have a very simple derivative with respect 633

to the complex phases of the system: 634

∂Knm

∂θh
= δhmKnm ,

∂Knm

∂θh

= δhnKnm , (67)

∂σn

∂θh
= Knh ,

∂σn

∂θh

= δnhσn . (68)

The linearization of σn around an operating state of the 635

system with complex couplings K◦
nm and complex power 636

σ◦
n is then given by 637

σn ≈ σ◦
n + σ◦

n∆θn +
∑
m

K◦
nm∆θm (69)

or, in vector notation, 638[
∆σ
∆σ

]
≈
[

K◦ [σ◦]
[σ◦] K

◦

] [
∆θ

∆θ

]
. (70)

As the nodal dynamics depend on ∆q̂n and ∆pn, as inputs, 639

we now consider 640

∆σn + αn∆Vn = ∆q̂n + j∆pn , (71)

for the output of the edge dynamics. Together with ∆Vn ≈ 641

V ◦
n

1
2 (∆θ + ∆θ), we obtain 642[

∆σ + α∆V
∆σ + α∆V

]
≈ Jnet

[
∆θ

∆θ

]
, (72)

with the transfer matrix 643

Jnet :=
[

K◦ + 1
2 [α][V ◦] [σ◦] + 1

2 [α][V ◦]
[σ◦] + 1

2 [α][V ◦] K
◦ + 1

2 [α][V ◦]

]
. (73)
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Note that K◦ is Hermitian, and so is Jnet. Further, we see644

from (66) that
[
1 −1

]⊺ is a zero mode of the network645

response Jnet.646

At this point, we can see the necessity of incorporating647

the V and q droop into the network response. Without648

the presence of the αn, Jnet would be indefinite and thus649

not amenable to sectorial analysis.650

E. The full system651

Above we derived the nodal transfer matrix from pn, qn +652

αnVn to ϱn and ωn, and the network response from θn653

and θn to σn +αnVn and σn +αnVn. We can now combine654

these into the full system equations. Recall that655

∆θ̇n = ηn , (74)
s∆θn = ηn , (75)

where the latter equation is in Laplace space. Let us656

introduce Ũ ∈ C2N×2N ,657

Ũ =
⊕

n

U . (76)

With this, we can write the network response from a658

deviation in ϱ and ω to a deviation in q̂ and p as659

T net(s) = 1
2Ũ

† 1
s
JnetŨ . (77)

The full system T nod#T net then has the structure660 ⊕
n

Tn(s) # T net(s) . (78)

The major remaining challenge to applying Proposition661

3 and getting decentralized conditions is to decompose662

this matrix into edge-wise contributions. As we will see663

in the next section, we can treat the network response as664

a superposition of two-node systems.665

Appendix D666

Proof of the main Proposition 1667

We now proceed to the proof of the main proposition. The668

first step is to provide conditions for the sectoriality of669

the nodal transfer matrices. Then, we provide the edge-670

wise decomposition of the network response, and demon-671

strate under which conditions it is semi-stable frequency-672

wise semi-sectorial. The main Theorem then follows by673

applying Proposition 3.674

A. Sectoriality of the nodal transfer matrix675

Each Tn(s) of the form (3) is a complex 2×2 matrix. Here,676

we give conditions that ensure that it is strictly accretive,677

meaning the numerical range is contained in the open right678

half plane: ϕ > −π/2 and ϕ < π/2. Is gives especially679

concise conditions for sectoriality.680

Lemma 4. A complex 2 × 2 matrix Tn(s) is strictly681

accretive, hence sectorial, if and only if its four entries682

[see (3)] fulfill (4) and (5):683

ℜ(T ωp
n ) + ℜ(T ϱq̂

n ) > 0 , (79)

ℜ(T ωp
n ) · ℜ(T ϱq̂

n ) >
1
4

∣∣∣T ωq̂
n + T

ϱp

n

∣∣∣2 . (80)

Proof. If the numerical range W of Tn (see (33)) is 684

contained in the right-hand side, the real part of W (Tn) 685

has to be strictly positive: ℜ(W (Tn(s))) > 0. The real 686

part of the numerical range is given by the numerical 687

range of the Hermitian part of Tn(s), which we denote 688

T̂n(s) = 1
2 (Tn(s) + Tn(s)†). The numerical range of a 689

Hermitian matrix is on the real axis. It is strictly positive 690

if and only if the matrix is positive definite. The two- 691

by-two matrix T̂n(s) is positive definite if and only if its 692

determinant and its trace are positive. Expressed in terms 693

of the matrix elements of Tn(s), these conditions are (4) 694

and (5). 695

B. Edge-wise decomposition and analysis of the network 696

response 697

We now return to the network response. Our goal is to 698

show that under the condition that [see (6)] 699

αn ≥ αtheory
n := 2

∑
m

Ỹnm
V ◦

m

cos(φ◦
n − φ◦

m) , (81)

we can decompose the network response into frequency- 700

wise semi-stable and semi-sectorial edge contributions. 701

Lemma 5. Jnet can be decomposed into edge-wise contri- 702

butions Je such that 703

Jnet = B†
+

⊕
e

JeB+ , (82)

if we introduce an edge-wise decomposition α′
nm of αn such 704

that 705

αn = −2V ◦
n

∑
m ̸=n

Lnmα′
nm. (83)

Proof. The fundamental strategy is to collect the terms 706

that represent each edge. In each of the four blocks of 707

Jnet, the off-diagonal matrix elements naturally have an 708

edge associated with them. The diagonal elements of 709

K◦ can be written as a sum of edge-wise contributions 710

K◦
nn = −|V ◦

n |2
∑

m̸=n Lnm. The σ◦ can be written as 711

σ◦
n =

∑
m ̸=n K◦

nm − |V ◦
n |2
∑

m̸=n Lnm. We then intro- 712

duce a similar decomposition for 1
2α times V ◦, writing 713

1
2 αnV ◦

n = −|V ◦
n |2
∑

m̸=n Lnmα′
nm. Now, the contributions 714

to the matrix elements of Jnet associated to an edge 715

e = (n, m) all live on the rows and columns associated 716

to n and m. Thus, we can place them in a 4 × 4 matrix Je 717

using the matrices Pe of (30) that pick out exactly those 718

rows and columns. 719

To collect these edge-wise contributions, we introduce 720

C ′
nm := v◦

n

v◦
n

(1 + α′
nm) − v◦

m

v◦
n

. Then we can succinctly write 721

the four-by-four matrix of elements originating from a 722

single edge as Je = −LnmR†J̃eR with 723

J̃e =


1 + α′

nm C ′
nm −1 0

C
′
nm 1 + α′

nm 0 −1
−1 0 1 + α′

mn C ′
mn

0 −1 C
′
mn 1 + α′

mn

 (84)

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2025.3613855

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SO Suisse Occidentale. Downloaded on September 25,2025 at 13:42:36 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON POWER SYSTEMS 10

and R := diag(v◦
n, v◦

n, v◦
m, v◦

m). With this, (82) can be724

verified by straightforward calculation, collecting all terms725

associated to each edge.726

As Jnet, and the Je, are Hermitian, their numerical range727

is on the real axis. They are (semi-)sectorial if and only if728

they are (semi-)definite. In the phase stability theorems,729

it is assumed that the transfer matrix G(ϵ+) has phase730

center zero. From (77) we see that this implies that Jnet
731

and thus Je have to be positive semi-definite.732

Lemma 6. Je is positive semi-definite, hence semi-733

sectorial, if734

|φ◦
n − φ◦

m| <
π

2 ∀ e = (n, m) ∈ E , (85)

α′
nm ≥ V ◦

m

V ◦
n cos(φ◦

n − φ◦
m) − 1 . (86)

Proof. This can be verified with a straightforward calcu-735

lation, e.g., using the Schur complement lemma.736

The edge-wise decomposition of αn leaves us with the737

freedom to weight the α′
nm freely, as long as they satisfy738

(83). The tightest bound is achieved by weighting them739

proportional to the bounds derived in (86). However, we740

can achieve a much more concise node-wise condition for741

the αn, which are actual dynamical parameters of the742

nodal actors:743

Lemma 7. T net(s) can be decomposed into semi-stable744

frequency-wise sectorial Te as745

T net(s) = Ũ †B†
+

⊕
e

Te(s)B+Ũ , (87)

if αn ≥ αtheory
n , i.e., (6) holds.746

Proof. The Te(s) are given by747

Te := 1
2s

Je . (88)

According to Lemma 6, (85) and (86) imply frequency-wise748

semi-sectorial Je and thus Te. The factor 1/s makes them749

semi-stable, because the pole is at zero and the rank is left750

constant along the contour. Using the definition of α′
nm,751

we see that (86) can always be satisfied if αn ≥ αtheory
n .752

As
⊕

e Te(s) only depends on s through scaling by a753

common factor, we also immediately have that its rank is754

constant along the contour. Thus, T net(s) is semi-stable755

frequency-wise semi-sectorial. On s ∈ j(ϵ+, ∞] the phases756

of the Te(s) are simply: ϕ(Te) = − π
2 = ϕ(Te). on the757

quarter circle of radius ϵ+ from jϵ+ to ϵ+, they rotate to758

0.759

In conclusion, (6) ensures semi-stable frequency-wise sec-760

torial T net(s) with a DC phase center of 0, which is a pole,761

and all phases − π
2 at s ∈ jR \ jΩ.762

C. Putting everything together763

Proof. We can now apply Proposition 3 to the system764

given by (78), with H = T nod =
⊕

n Tn(s), B = B+Ũ ,765

and G = T net = B†⊕
e Te(s)B. We have shown in766

...
...

Figure 4: Block diagram representation of the system
considered. Block H is the nodal response to the lines’
output, and block G is the lines’ response to the nodes’
dynamics.

the previous sections that with (4)-(6), (i) the Tn in (3) 767

and (62) are in RH∞ (hence stable) and frequency-wise 768

sectorial according to Lemma 4; (ii) the Te in (88) are semi- 769

stable frequency-wise semi-sectorial according to Lemma 770

6. They are also semi-stable along the shared indented 771

imaginary axis because they share the same poles. Finally, 772

G has constant rank along the contour, because it depends 773

on s only by a prefactor 1/s. 774

We now proceed to show that (37)-(40) hold. Equation 775

(37) is fulfilled for (4)-(5), as ϕ(Tn) > −π/2 and ϕ(Tn) < 776

π/2. Equation (38) is fulfilled, as ϕ(Te) = − π
2 = ϕ(Te). 777

Similarly, the combined phases of T net and T nod lie within 778

(−π, 0) at all s ∈ jR \ jΩ, hence (39) and (40) hold. This 779

concludes the proof. 780

As Te have phase − π
2 at all non-zero frequencies, the 781

phases of Tn need not be contained in the open right half 782

plane. However, T̂n > 0 is sufficient for our examples below 783

and gives the most concise conditions. 784

Appendix E 785

Proof of Proposition 3 786

A. Preliminaries 787

Let us recall two properties of W ′ that will prove useful 788

later on. First, it follows from the definition of W ′ that 789

W ′(B†MB) ⊆ (W ′(M) ∪ 0) , (89)

for any M ∈ Cm×m and B of appropriate size, and 790

therefore, 791

ϕ(B†MB) ≤ ϕ(M) , ϕ(B†MB) ≥ ϕ(M) . (90)
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Second, for a block diagonal system M =
⊕

e Me, the792

numerical range is the convex hull of the blocks’ numerical793

ranges [37, Property 1.2.10]:794

W (M) = Conv (W (M1), ..., W (ME)) . (91)

Thus, if M is semi-sectorial,795

ϕ(M) = max
e

ϕ(Me) , ϕ(M) = min
e

ϕ(Me) . (92)

With this toolbox, we are now ready to prove our main796

result. The proof of Proposition 3 relies on the four797

following Lemmas.798

Lemma 8. Let T1, ...,TN be stable transfer matrices. Then799

T (s) =
⊕

n Tn(s) is stable.800

Proof. The transfer matrix T (s) is stable, because the set801

of its poles is the union of the poles of its blocks.802

Lemma 9. Let T1, . . . ,TN be frequency-wise sectorial803

transfer matrices. Then, T (s) =
⊕

n Tn(s) is frequency-804

wise sectorial if and only if805

max
n

ϕ (Tn(s)) − min
n

ϕ (Tn(s)) < π , (93)

for all s ∈ j[0, ∞], cf. (37).806

Proof. Due to (91), we have that W (T ) is the convex hull807

of all W (Tn). Therefore, if (93) is satisfied for all, W (T )808

is contained in a sector of angle δ(T ) < π. Furthermore,809

as none of the W (Tn) contain the origin, W (T ) does not810

contain the origin. We conclude that T is frequency-wise811

sectorial. Similarly, if T is frequency-wise sectorial, then812

none of the W (Tn) contains the origin, and they all lie in813

a sector of angle smaller than π, and (93) holds. All of814

the above holds for any s ∈ j[0, ∞], which concludes the815

proof.816

Lemma 10. Let T1, ..., TE be semi-stable transfer matrices817

and let us define T (s) =
⊕

e Te(s). Let B be a complex818

matrix of appropriate dimensions. Then both T (s) and819

B†T (s)B are semi-stable.820

Proof. The transfer matrix T (s) is semi-stable, because821

the set of its poles is the union of the poles of its blocks.822

As the matrix B cannot introduce new poles, the poles of823

B†T (s)B form a subset of the poles of T (s). Therefore,824

B†T (s)B is semi-stable.825

Lemma 11. Let T1, ..., TE be frequency-wise semi-sectorial826

transfer matrices and let us define T (s) =
⊕

e Te(s).827

Assume further that828

max
e

ϕ(Te(s)) − min
e

ϕ(Te(s)) ≤ π , (94)

for all s ∈ jR \ jΩ, where jΩ is the union of the poles of829

T1, ..., TE that lie on the imaginary axis, cf. (38). Assume830

that T1, ..., TE are all frequency-wise semi-sectorial, and831

assume furthermore that they are semi-sectorial along the832

indented imaginary axis, avoiding the poles of all Te(s) for833

indents smaller than some finite ϵ∗. Finally, assume that834

B†T (s)B has constant rank along this indented imaginary835

axis for some constant complex matrix B of appropri- 836

ate dimensions. Then B†T (s)B is frequency-wise semi- 837

sectorial. 838

Remark: T (s) is covered with B = I. 839

Proof. First, observe that if a meromorphic Te(s) has 840

constant rank r on a contour, it has constant rank on any 841

infinitesimal deformation of the contour. A matrix of rank 842

r has a minor of order r with non-zero determinant, and 843

the determinants of all minors of order larger than r are 844

zero. As the minors are meromorphic functions, they are 845

either identically zero or their zeros are isolated points. 846

Thus, the rank can only change at isolated points of the 847

meromorphic function. As the rank is constant on the 848

contour, none of these points can be on the contour, and 849

we can deform the contour, avoiding these points. 850

Take an ϵ < ϵ∗ such that for all ϵ′ ≤ ϵ, the imaginary axis 851

with ϵ′ indentation at jΩ does not hit a rank changing 852

point of any Te(s), e ∈ {1, ..., E}. 853

By assumption, for all e ∈ {1, ..., E}, Te(s) is semi-sectorial 854

and has constant rank on this ϵ-indented imaginary axis 855

(contour). 856

Combining (89), (91), and (94), semi-sectoriality of 857

T1(s), ..., TE(s) implies semi-sectoriality of B†T (s)B, for 858

s ∈ jR. 859

Furthermore, by assumption, B†T (s)B has constant rank 860

along the ϵ-indented imaginary axis. 861

Altogether, the above implies that B†T (s)B is frequency- 862

wise semi-sectorial, which concludes the proof. 863

B. Proof of Proposition 3 864

Proof. By Lemma 8, H =
⊕

n Tn is stable. By Lemma 9, 865

H is frequency-wise sectorial if (37) holds. By Lemma 10, 866

G = B†⊕
e TeB is semi-stable. By Lemma 11, G is 867

frequency-wise semi-sectorial if (38) and the constant rank 868

condition hold. 869

Using one more time the convex hull property (91), in par- 870

ticular (92), and the subset property (89), the assumptions 871

(39)-(40) yield 872

sup
s/∈jΩ

[
ϕ

(⊕
n

Tn

)
+ ϕ

(
B†
⊕

e

TeB

)]
< π , (95)

inf
s/∈jΩ

[
ϕ

(⊕
n

Tn

)
+ ϕ

(
B†
⊕

e

TeB

)]
> −π , (96)

where Tn and Te are functions of s. These are the phase 873

conditions (35)-(36) of Theorem 2. All in all, the system 874

(
⊕

n Tn) #
(
B†⊕

e TeB
)

then satisfies all assumptions 875

and conditions of Theorem 2 and is therefore stable, which 876

concludes the proof. 877
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