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ABSTRACT

The dynamics of systems of interacting agents is determined by the structure of their coupling network. The knowledge of the latter is,
therefore, highly desirable, for instance, to develop efficient control schemes, to accurately predict the dynamics, or to better understand inter-
agent processes. In many important and interesting situations, the network structure is not known, however, and previous investigations have
shown how it may be inferred from complete measurement time series on each and every agent. These methods implicitly presuppose that,
even though the network is not known, all its nodes are. Here, we investigate the different problem of inferring network structures within the
observed/measured agents. For symmetrically coupled dynamical systems close to a stable equilibrium, we establish analytically and illustrate
numerically that velocity signal correlators encode not only direct couplings, but also geodesic distances in the coupling network within the
subset of measurable agents. When dynamical data are accessible for all agents, our method is furthermore algorithmically more efficient than

the traditional ones because it does not rely on matrix inversion.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0058739

Network inference is useful for complex systems as diverse as bio-
logical networks, power grids, information, and social networks,
to name but a few. Time series of the degrees of freedom are typ-
ically obtained through experiments or monitoring on systems
that are most of the time only partially accessible. Indeed, in some
systems, the number of interacting agents is too large so that it
is impossible to monitor all of them, some agents might be hid-
den, or one only needs information on a specific part of a larger
coupled system. In this work, we propose a method to infer the
network structure within a set of accessible agents for which time
series of the degrees of freedom are measurable. The observed sys-
tem is subjected to noise that might come from environmental
degrees of freedom that were neglected or from external per-
turbations. We analytically connect the two-point correlators of
the velocity deviations to the underlying coupling network for a
general class of symmetrically coupled systems close to a stable
equilibrium.

. INTRODUCTION

Network science—the field that studies complex, networked
systems'—has seen an enormous growth of activity in recent years.
More and more diverse systems of physical, life, and human sciences
are analyzed through larger and larger models of agents connected
to one another,’ thanks in large part to the ever-increasing capacity
for data mining and processing.” As a matter of fact, network science
draws heavily on data science; however, it also draws on analyti-
cal methods, most notably of statistical physics, graph theory, and
dynamical systems.

Approaches combining analysis and data generally compen-
sate for the weaknesses of one with the strengths of the other and
are currently extensively applied to solve challenging problems of
network science. One such challenging problem is to reconstruct
the structure of a priori unknown networks from sets of dynami-
cal measurement data of its agents. Time series recording the agents
dynamics are used to infer the topology of their coupling network
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when the direct observation of the latter is impossible.”” The gained
knowledge of the coupling network is then used to evaluate the
state of the system more precisely, to predict its future evolution,
to anticipate extreme behaviors, to implement control schemes, to
deduce inter-agent processes, and so forth. The problem is of par-
ticular interest for noisy social networks, which change over short
time scales,’ interconnected power grids, and information networks
whose topology is regularly modified by line faults and reroutings’~"
or gene regulatory networks made of such huge numbers of proteins
and genes that the precise structure of their interaction network is
inaccessible.''~"* In all these examples, it is particularly important
to have inference methods that are resilient against missing data and
that can still reliably provide partial network structures in the case of
incomplete measurements, i.e., when not all agents are measurable.

There is a rather vast literature on network inference from
dynamical measurements of agents, and many data-based methods
have been constructed. Early approaches use a probe injection signal
and measure the response dynamics of the agents.'~*’ The successful
reconstruction of the network topology, through, e.g., the Laplacian
matrix, the Jacobian matrix of dynamical flows, or the adjacency
matrix, requires then not only to record the dynamics of all agents,
but also that one can control and inject specially tailored probe sig-
nals. Less demanding passive methods have been devised, which rely
only on observations of the agents dynamics. Some are based on
the optimization of a likelihood”! or cost function and require com-
putation time that scales at least as O(n*),”” or even as O(n*),””!
with the number # of agents. To reconstruct large networks, a com-
putationally more efficient method is, therefore, highly desirable.
Lighter, probabilistic approaches identify likely couplings between
pairs of agents from statistical properties of the corresponding pairs
of trajectories.”” =" A different and rather efficient approach extracts
the network topology from the n(n — 1)/2 two-point correlators of
pairs of agent trajectories in systems subjected to white’'~* or corre-
lated noise.”””” The method is in principle quite accurate; however,
it assumes that every agent in the system is measurable. Because in
many systems, measurements of only subsets of agents are possi-
ble, or because one often cannot be sure that all nodes are actually
known and recorded, it is important to develop a reconstruction
method that can extract even partial but reliable information on the
network from dynamical data over a subset of the agents. In this
paper, we construct such a method for a general class of symmet-
rically coupled systems close to a stable equilibrium. In contrast to
purely data-based approaches such as machine learning algorithms
or optimization techniques, our method connects statistical proper-
ties of time series data to the coupling between agents. Therefore,
it does neither rely on any training set nor on minimization solvers
but only on sufficiently long time series.

Il. RESULTS

We consider general dynamical systems defined by coupled
ordinary differential equations in the vicinity of a stable fixed point
solution. Stability means that upon not too large deviations, the
system remains close to the fixed point. Consider now that the sys-
tem is initially there but is subjected to some noisy perturbation.
The latter may originate from simplifications in constructing the
model from the coupling to unavoidable environmental degrees of
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freedom or from a deliberately applied perturbation.® Assuming
that the noise is sufficiently weak, the system wanders stochasti-
cally about but remains close to the fixed point for a long time.””*
We record the dynamics of the agents and, from these time series,
compute two-point velocity correlators, (8x;0%;), between measur-
able agents i and j. Our key observation is that, unlike the position
correlators considered so far,”'~* velocity correlators contain direct
information on the network Jacobian matrix of dynamical flows [see
Eq. (6)]. The method, therefore, enables the direct reconstruction of
network structures without any matrix inversion. This apparently
minor improvement impacts network inference very significantly
and positively in that, first, and most importantly, avoiding the
matrix inversion enables one to still recover partial information on
the network matrix when only a subset of the agents is measurable;
second, matrix inversion being a computationally costly operation,
our method is scalable to larger networks; third, our method is able
to identify not only direct couplings, but also the geodesic distance
between pairs of not too distant observable agents. Additionally,
we show below that the method can efficiently determine topolog-
ical changes in time-evolving networks. The price to pay for these
improvements is moderate. As a matter of fact, we show in the
supplementary material that measuring velocity instead of position
correlators does not require a prohibitively fine time sampling of the
dynamics and that our method is more robust against measurement
noise.

The power of our method to infer partially accessible network
structures is illustrated in Fig. 1 for a dynamical system of n = 100
agents on a random Erddés-Rényi network. Existing network cou-
plings between pairs of m = 10 measurable agents are shown in red
in panel (a). Observers, unaware that they have access to a fraction
of the network agents only and who would apply the position corre-
lator method of Refs. 31-35 outside its range of validity, would gen-
erally conclude that all pairs of agents are directly coupled because
the method relies on a matrix inversion (see the supplementary
material). This is shown in panel (c). Furthermore, the position
correlator method also fails quantitatively in that it predicts cou-
pling strengths that are too large by a factor of up to three. These
shortcomings do not affect our method, however, which correctly
predicts qualitatively and quantitatively the couplings between the
m = 10 measurable agents [blue lines and histogram in panels (b)
and (d)]. When all agents are accessible, our method finally captures
the full network structure with high precision. This is illustrated in
Fig. 2.

A. Network-coupled dynamical systems

We consider a system of n agents whose coordinates are
cast in a vector x € R". Their dynamics is governed by a generic
autonomous ordinary differential equation,

x(t) = F[x(0)]. (1

Assume next that this equation has a stable fixed point solution x*,
i.e., F[x*] =0, that F = (F,,...F,) is a real vector function that is
differentiable about x* and that the Jacobian matrix of the dynam-
ical flows, J;j(x*) = —dF;(x*)/0x;, is real symmetric and positive
semidefinite at x*. The pairwise couplings between agents is encoded
in Jj, and the latter condition guarantees the stability of the fixed

Chaos 31, 103117 (2021); doi: 10.1063/5.0058739
Published under an exclusive license by AIP Publishing

31,103117-2


https://aip.scitation.org/journal/cha
https://www.scitation.org/doi/suppl/10.1063/5.0058739
https://www.scitation.org/doi/suppl/10.1063/5.0058739

Chaos

ARTICLE

scitation.org/journal/cha

-
-7
-

8
&
X IORSK

2Nerr/m(m — 1)

J ij

-12  -1.0 -08 -06 -04 0.2 0.0 0 10 20 30 40 50 60 70 20 10 60 80 100

FIG. 1. Partial network inference from partial measurements. (a) Erdés-Rényi random network” with n = 100 agents subjected to the dynamics defined by Egs. (1), (A1),
and (A2) with f(x) = sin(x) and nonzero matrix elements J; € [0.6, 1.3]. Only the m = 10 black nodes are measurable. They are directly connected by the red edges.
(b) Edges inferred using our method [Eq. (7)]. The inferred partially reachable network (blue) is the same as the true, accessible one (red) in panel (). (c) Edges inferred
from the method of Ref. 31 (see the supplementary material) applied outside of its regime of validity to the subset of accessible nodes. Solid green edges are those correctly
inferred, while dashed green edges are incorrectly predicted to exist. (d) Elements of the Jacobian matrix of dynamical flows between ten black nodes in panel (a). All blue
crosses are within the gray area corresponding to J; & 0.1. Red histogram bars give the distribution of true matrix elements; blue crosses and histogram bars are results

from Eqg. (7); green crosses and histogram bars correspond to the method of Ref. 31. (e) Fraction of errors 2n,, / m(m — 1) of inferred off-diagonal elements .T]U- as a function
of the number of accessible nodes m. Blue symbols correspond to our method [Eq. (7)]; green symbols correspond to the method of Ref. 31. Different symbols correspond

to different tolerances, € > Ij i — Jjl, for correctly inferred couplings.

point solution under not too strong perturbations. Assume finally
that the system is subjected to a noisy perturbation &(¢), starting
initially at the fixed point. When the noise perturbation is suffi-
ciently weak, the system remains in the vicinity of the fixed point for
long times,”** and its dynamics is well captured by the linearized
ordinary differential equation

dx = —J(x") éx + &, (2)
governing the vector of deviation coordinates §x = x — x*. Despite

its simplicity and the assumptions on which it is based, Eq. (2) is
used to analyze a wide variety of systems, such as electric power

platoon formation and stability in traffic modeling and control,*’ or
contagion dynamics at early stages of epidemic."""

The matrix elements J;(x*) contain the information we want
to extract on the coupling network between agents i and j. It is the
matrix we want to reconstruct. Under our assumptions that it is
real symmetric and that x* is a stable fixed point, J(x*) has real,
nonnegative eigenvalues, 0 < A; < A, < --- < A, associated with a
complete orthonormal basis of eigenmodes {u,},_,. Equation (2)
is solved by a spectral expansion of the displacements over this
basis, 8x(t) = D", ¢ (t)#,. This leads to a set of uncoupled Langevin
equations with the solution®

grids subjected to fluctuations of loads,***" consensus algorithms o (f) = e Hat / ‘ P EW) - uy dY 3)
in computer science,’’ opinion dynamics in social sciences,” vehicle ¢ 0 ¢
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FIG. 2. Full network reconstruction from complete sets of measurement. (a) Complex network used to generate time series following the dynamics defined by Eqgs. (1)
and (A1) with f(x) = sin(x), in the limit 4, 70 < 1 of short noise correlation time. (b) Color-coded true Jacobian matrix of the dynamical flows for the network in panel (a).
(c) Color-coded difference AJ; = |jI,-,- — Jj| between matrix elements of the inferred (3) and true (J) Jacobian matrices. Note the difference in colorscale between panels (b)
and (c). (d) PanTaGruEl model of the synchronous power grid of continental Europe'” used to generate time series following the dynamics defined by Eqgs. (1) and (A1) with
f(x) = sin(x), in the limit A, 7o < 1 of short noise correlation time. The complete network has n = 3809 nodes and 4944 edges. (¢) Complete inference for the PanTaGruEl
network with all agents accessible to measurement. Blue crosses plot the inferred matrix elements jy from Eq. (7), against their real value Jj. (f) Histogram of the inferred
velocity (blue) and of the true Jacobian matrix (red) of dynamical flows. The method satisfactorily infers the Jacobian matrix elements that vary over more than one order of
magnitude and furthermore identifies the two types of edges, corresponding to different voltage levels of 220 and 380 kV [arrows in panels (e) and (f)]. The separation between
low-valued inferences (corresponding to non-existent edges) and higher-valued ones is obvious. The small but still significant inference imprecision is due to computational
limits for generating velocity time series by simulating the dynamics of this large network and not to our inference method.

for the coefficients of the spectral expansion. To calculate the equal
time, two-point velocity correlator (8x;(£)8;(¢)) between agents i
and j, we next need to specify the noise distribution.

B. Network reconstruction from ambient noise

The perturbation noise in Eq. (2) is unavoidable. This is, in
particular, so since real systems are often too complicated to be
exactly modeled by a tractable function F[x]. Therefore, noise is
often introduced to mimic the effect of neglected terms or to model
uncapturable environmental degrees of freedom.*® It is reasonable to
assume that this ambient noise has fast decaying spatial correlations
and is characterized by some finite correlation time 7,. Accordingly,
we model & (f) by an Ornstein-Uhlenbeck process defined by its first

two moments

&@®) =0,
(&t + At/2)5(t — At/2)) = & 8 exp (—|At/T0)

where &, is the noise standard deviation and the brackets denote
ensemble averaging over noise realizations or a large enough obser-
vation time, {(---) = limy_ T} fOT- -- dt. Ambient noise origi-
nates from couplings to an environment that is large by definition.
Accordingly, one standardly assumes that 7, is one of, if not, the
shortest time scales in the problem. In our discussion, we take T,
as an independent parameter, but we often assume below that the
physically relevant limit is 7o — 0.
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In this paper, we specialize to sets of agents with two-body
interactions, F; = w; + };; Fij, whose coupling network can be
inferred from the linearized dynamics close to the fixed point solu-
tion x* of Eq. (1). Accordingly, only the first two moments of the
noise need to be specified to infer the coupling network through 7.
We note that our method can be extended to coupling networks with
higher order interactions between three or more agents, in which
case one needs, however, to specify higher order moments of & ().
Also worth noticing is that Eq. (2) satisfies conditions for dynamical
structure reconstruction.”

Earlier approaches reconstruct first the pseudo-inverse Jaco-
bian J' from two-point position correlators (8x:(t)8x;(1)) derived
from dynamical measurements over all agents.”’~ Here, we con-
sider instead two-point velocity correlators, (8x;(¥)8x;(t)), which
enables us to directly reconstruct J, without any matrix inver-
sion, as we will show shortly. We consider the long-time influence
of the noise perturbation after all initial transient behaviors have
relaxed. Expanding the velocities over the eigenmodes of J, dx(t)
=Y, c(Du,, and using Egs. (3) and (4), it is straightforward to
obtain (see the supplementary material)

Ay
llmtﬁm(‘sxl(t)(sx](t)) = %-02 < ij Z Uy iUy, 1+ ;0_[0> (5)

where u,; is the ith component of the ath eigenmode.

Equation (5) connects the long-time velocity correlator to the
eigenmodes and eigenvalues of the Jacobian matrix J. To extract net-
work structures from it, we recall that the matrix elements of the kth
power of J read (.,]]k),j =Y, A ug ity ;. Taylor-expanding Eq. (5) in
the limit of short correlation time, 4,7y < 1, then gives

lim, . (85, ()85 (1)) = &2 [8,,- +> <—ro)k<J’<>,-j} NG

k=1

In the opposite limit of A,7y > 1, another Taylor-expansion con-
nects the velocity correlator to powers of the inverse Jacobian
instead (see the supplementary material). As argued above, if the
noise perturbation arises from a large, fast-varying environment,
the limit 4,7y < 1 of short noise correlation time is expected to
be physically more relevant. Accordingly, we base our network
reconstruction approach on Eq. (6).

C. Direct network reconstruction

In the limit of very short noise correlation time, A7y — 0, only
the k = 1 term in Eq. (6) matters, which gives

jij = (8 — (55@5_5(]-)/502) To_l- -

The Jacobian matrix J of dynamical flows is directly given by the
long-time velocity correlator. Equation (7) enables the complete
reconstruction of the network when all nodes are measurable. It is
important to realize that this is done passively, i.e., solely by mea-
suring the dynamics of the agents. In particular, the method does not
require to control the perturbation. For full network reconstruction,
Eq. (7) improves on earlier approaches in that the considered veloc-
ity correlators directly give the matrix elements of J and not of its
inverse. This is algorithmically advantageous, especially in systems
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with many agents. If one is only interested in the structure of the
Jacobian matrix, then 7y and &, do not need to be known. If one
wants a more quantitative inference, 7, can be extracted from the
frequency spectrum of the time series, while the noise amplitude is
obtainable from the variance of the agent coordinate at a single node,
(8x2) = &. For full reconstruction, the method is numerically illus-
trated in Fig. 2. Quite remarkably, one sees in Figs. 2(¢) and 2(f) that
our method correctly identifies different magnitudes of the Jacobian
matrix elements.

Equation (7) furthermore enables one to identify direct con-
nections between nodes without the need to reconstruct the full
matrix. This is especially important when one has access to only
a subset of the agents in the network or if one wants to check the
connectivity only within a particular subset of the nodes. Then, our
approach allows us to infer all direct connections between pairs of
agents within those subsets. This is illustrated in Fig. 1 where one
sees that Eq. (7) accurately reconstructs the direct couplings, includ-
ing their magnitude, between the m = 10 measurable agents in an
Erdés-Rényi network of n = 100 agents. Observers who would not
know that only a subset of the agents is being recorded and who
would apply approaches based on position correlators outside their
range of applicability, would wrongly conclude that the coupling
between these m = 10 agents is all-to-all. This is so since these meth-
ods first construct the inverse of the network matrix and then invert
that partially known matrix.

D. Inferring geodesic distances

When the noise correlation time is small, but finite, one can
extract further important information from Eq. (7), beyond direct
network couplings. Suppose that two measurable agents i # j are
located a geodesic distance g away from each other. This means
that the shortest path i — k; — k; — ---k,_; — j from i to j goes
through g direct network couplings. Accordingly, q is the lowest
exponent for which (Jq)ij # 0, and therefore, for such pairs i # j,
one has, instead of (6),

(8x:8%) = & Y (—10)" ("), (8)

This makes it possible to determine the geodesic distance g between
any measurable pair of nodes (i, j) as long as

ming, (J9), 75" > (J9); > maxg,, I, 7, 9)

where the minimum (resp. maximum) is taken over pairs (I, m) of
nodes with geodesic distance < g — 1 (resp. > g + 1). When Eq. (9)
holds, pairs of nodes with geodesic distance g have noise correlators
sufficiently away from those with geodesic distances ¢ — 1 and q + 1
that one can identify them.

Inference of geodesic distances between pairs of measurable
agents is illustrated in Fig. 3 for a small random network with n = 20
agents. When the noise correlation time 1, is sufficiently small, one
sees that the values of long-time velocity correlators coalesce into
distinct clusters. Each cluster corresponds to agents located a fixed
geodesic distance away from the chosen agent. Cluster correlator
values decrease with increasing geodesic distance, which allows one
to infer the latter. Remarkably, the method works even when the
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FIG. 3. Inference of geodesic distances. A long-time velocity correlator of Eq. (5) between agent #4 [open red circle in the network map in the inset of panel (a)] and all
other agents up to its fourth neighbors. The geodesic distance between pairs of considered agents is color-coded. (a) Network with uniform couplings. (b) Network with
inhomogeneous couplings with strengths varying by a factor of 4.5. Vertical dashed lines indicate the boundaries 7o = A" (left) and 7o = A, ! (right) from the spectrum of
the Jacobian. (c) Complete reconstruction of the first to fourth neighbors from Eq. (5) for the network in the inset to panel (a) with homogeneous couplings. For each agent
i=1,...,20and each correlator value, the color plot gives the number of agents j # i with that correlator value for 1,79 = 0.4 [smallest value in panel (a)].

network has nonhomogeneous couplings [see panel (b)] and is lim-
ited only by correlator values becoming smaller and smaller as the
geodesic distance increases.

We found that the inference of geodesic distances is in practice
limited to identifying the first few neighbors. This is so because first,
it requires short correlation times and second, from Eq. (6), pairs of
kth neighbor agents (i, j) have a noise correlator given by

As k increases, the correlator, therefore, becomes smaller and
smaller, until it eventually is smaller than its statistical standard devi-
ation, at which point geodesic distances can no longer be inferred.
For the networks we investigated (see Fig. 3), we have found that
geodesic distances up to k = 3,4 can typically be inferred. As a
remark concluding this paragraph, we stress that Eqgs. (8) and (9)
allow one to extract geodesic distances between pairs of measur-

able agents, even when only a subset of the agents is accessible.
In that situation, powers of the partially inferred Jacobian would

(8x:8%;) = £ (—10)* (TN + Ol (T, (10)  systematically overestimate geodesic distances.
a b G
0.0 I
Jig -os /
-1.0 A?
-1.0 -0.5 0.0 10° 10! 10% 10° -1.0 -0.5 0.0 10! 10? 10° -1.0 -0.5 0.0 10°
Jij Ji; Jij

FIG. 4. Partial inference on large networks. Partial velocity correlator inference of Eq. (7) for networks with n = 1000 agents, m ~ 100 of which are accessible to measure-
ment. Blue crosses plot the inferred matrix elements .T],-,- between measurable agents against their real value J;. Converted into a histogram form, the data exhibit a clear
separation between low-valued inferences—corresponding to vanishing couplings—and higher-valued inferences—corresponding to existing couplings. Red histograms cor-
respond to the true Jacobian matrix of dynamical flows. The networks are (a) an Erdés-Rényi network,” (b) a Barabasi-Albert network,” and (c) a Watts—Strogatz network."’
The small but still significant inference imprecision is due to computational limits for generating velocity time series by simulating the dynamics of these networks and not to
our inference method.
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x10-6 E. Partial reconstruction from partial measurements

Equation (7) makes it clear that Jj; can be predicted from time
series for agents i and j only, and we already mentioned that this
enables partial reconstruction of network structures even when there
are inaccessible agents. The power of our method for partial network
structure inference has already been illustrated in Fig. 1, and we next
show how it scales to larger systems.

Figure 4 shows how our inference method correctly differ-
entiates the nonzero network couplings from the vanishing ones
for three types of complex networks with n = 1000 agents, about
m =~ 100 of which are accessible to measurements. The chosen
finite recording time and the finite noise correlation time result

in an uncertainty of the inferred matrix elements J; however,
400 600 800 1000 1200 1400 their histogram indicates a clear separation between low-valued and

<106 high-valued jij, i.e., between vanishing and existing direct network
couplings. For the existing couplings, one furthermore sees that
the inferred histogram largely overlaps with the real ones since the
predicted coupling strengths are quantitatively captured.

In the supplementary material, we show a direct comparison
of the results of Fig. 4 with predictions from the method of Ref. 31,
which shows that the latter, applied outside its range of validity to
infer the coupling network between a subset of measurable agents,
fails in predicting the existing couplings and their coupling strength.
Our method thus offers a significant improvement over existing
approaches when not all nodes are accessible to measurement.

(6:0%;)

F. Time-evolving networks

400 600 800 1000 1200 1400 We finally show how the noisy agent dynamics directly reflects
topological changes in the coupling network structure. From Egs. (6)
and (7), disconnecting a network edge between two agents reduces
the corresponding velocity correlator and makes it even disappear
in the white-noise limit. Recording the noise and calculating the
velocity correlator in real-time enables one to identify topological
changes. This is illustrated in Fig. 5 for three Watts—Strogatz net-
works where one coupling is cut at At & 900 (see arrows). The
velocity correlator is quickly reduced compared to the value it has
without a topological change, almost directly reflecting the coupling
cut. In the supplementary material, the calculation of the velocity
correlator indicates that transient terms exist, which disappear expo-
nentially in time with rates given by the eigenvalues of the network
Jacobian matrix J. These terms govern the transient behavior fol-
lowing the topological change in Fig. 5. Therefore, such topological

x10~6

(63:0;)

400 600 800 1000 1200 1400 changes can be identified after a time on the order £, ~ A, " with the
Aot smallest nonvanishing eigenvalue A, of the Jacobian of dynamical
flows after the topological change. This reasoning is confirmed in
FIG. 5. Real-time monitoring of dynamically evolving networks. Time evolu- Fig. 5 for three networks with different A,.

tion of the agent velocity correlator between agents i and j for three different
Watts-Strogatz networks*” with n = 20. The correlator is calculated over sliding

time-windows. The coupling between / and j (red edge on the blue networks on the 11l. DISCUSSION
right panels) is removed at time A,t = 900, indicated by the arrow in each panel. . . . .
Following that topological change, the velocity correlator decreases fast and oscil- We have shown how to infer a coupling network via dynamical
lates around zero (orange curve), well below its behavior without the change (blue monitoring of its agents. The method presents a number of advan-
curve), as predicted by Egs. (6) and (7). In all three cases, the convergence time z, tages over existing approaches. In particular, (i) it is nonintrusive; it
to the new behe?vior is determined by th% smallest r;onvanishing Jacgbian eigen- does not require the ability to inject a perturbation signal locally on
value, 7o ~ A", With A, = 5.84 x 107°,4 x 107%,and 8.2 x 10~ from top to specific agents, (ii) it allows one to reconstruct network structures
bottom. . . L.

such as direct couplings and geodesic distances between measurable
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agents even when only partial measurements are feasible, (iii) it is
algorithmically efficient; unlike earlier approaches, it does not rely
on a matrix inversion as it directly reconstructs the network matrix;
it is, therefore, easily scalable to larger networks, and (iv) it allows
one to monitor time-evolving networks in real-time and, in partic-
ular, to identify when a direct coupling line between two agents is
cut. The price to pay for these advantages is that velocity and not
position correlators need to be measured. One may then think that
the resolution in time sampling necessary to extract velocities from
positions would render our method inapplicable in practice. In the
supplementary material, we show that this is not so, as the time
sampling needs only to resolve the time scales A" of the network
but not the noise correlation time t,. This poses only a weak con-
dition on the resolution one must have to extract velocities from
positions. Finally, we also show in the supplementary material that
our method is more robust against measurement noise than earlier
ones. We, therefore, think that our method will prove to be very
beneficial to infer basic interactions in large networks, which often
cannot be fully monitored or directly probed, or simply to extract
partial network structures, when one does not need to know the full
network.

Classes of network-coupled systems include those with higher-
dimensional agents with intrinsic, internal dynamics. While not
considered in our numerical illustrations, we believe that our
method also applies to such systems in the case of fully symmetrical
couplings, i.e., also with respect to the internal degrees of freedom.
Network reconstruction in such cases has been attempted based on
data-based approaches,” and we leave it to future works to illustrate
the power of our method in such cases.

As a final remark, when inferring an unknown network from
measurement of the dynamics of its agents, one may be trying to
reconstruct a disconnected network without knowing it. In that
case, we show in the supplementary material that earlier inference
methods based on measurement time series of agents dynamics and
their correlators have trouble differentiating between existing and
non-existing couplings. Our method does not suffer from this short-
coming. As such, it is able to reconstruct network structures for fully
unknown networks, where neither all nodes nor the network con-
nectivity are known a priori. Future works might apply our method
to time series measured from real-world systems.

SUPPLEMENTARY MATERIAL

See the supplementary material that gives details of the analyti-
cal results presented in the main text, considers the case of inference
with noise that has long correlation time, shows further numerical
illustration of our inference method, and also discusses the effect
coming from the sampling rates of the time series on the precision
of our method.
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APPENDIX: METHODS
1. Dynamical model

In our numerical investigations, we focus on Eq. (1) with

Fi[x(t)] = w; — Z a;; f(xi — x;). (A1)
j

Here, w; € R are natural frequencies with ), w; = 0; the interac-
tion between agents is a differentiable function f: R — R, which
is even in its indices i and j and odd in its argument, and
a;; > 0are unknown elements of the adjacency matrix of the interac-
tion network. When the nonvanishing a; are sufficiently large and
numerous, Eq. (1) has at least one stable fixed point x* € R”, see,
e.g., Refs. 49 and 50.

For this type of models, the Jacobian matrix of dynamical flows
reads

—a;; 3y f(x)
Dk @ik O fx)

It is a Laplacian matrix with zero row and column sums of its
components and one vanishing eigenvalue, A; = 0, corresponding
to a constant-component eigenmode, u; = (n=/2,n7 V2, ..., n71/?),
Equation (A2) makes it clear that J(x*) contains information on
both the coupling network and the fixed point x*.

i#])

Jj(x) = Y (A2)

x=xtoxt > L=

2. Numerical simulations

Dynamical series for the agent coordinates and velocities are
obtained from Egs. (1) and (Al) that are time-evolved following
a fourth-order Runge-Kutta algorithm. In most numerical simu-
lations, we considered the short correlation time limit, A,7y < 1.
Short noise correlation times require even shorter Runge-Kutta
time steps for accurate dynamical calculations. This results in rather
long computation times for generating velocity time series of suffi-
cient duration, while time series on only one every ten (or more)
Runge-Kutta time steps are needed as input for our inference
method. The generation of these input data requires computation
times on the order of a week on 12 Intel® Xeon® Gold 6140 CPU
@ 2.30 GHz for each simulation of the larger networks considered
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in this article. Longer computation times would improve the accu-
racy of our numerical simulations. It is important to understand
that this is not a shortcoming of our approach, which infers net-
work structures in a fraction of the time needed to generate its input.
The convergence of the algorithm to the true Jacobian as longer time
series are generated is illustrated in the supplementary material.
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