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The graph impacts dynamics... and vice versa

W.-X. Wang, Y.-C. Lai, and C. Grebogi, Phys. Rep. 644 (2016).

I. Brugere, B. Gallagher, and T. Y. Berger-Wolf, ACM Comput. Surv. 51 (2018).
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Various approaches

Probing: [Yu et al., Phys. Rev. Lett. 97 (2006)], [Timme, Phys. Rev. Lett. 98 (2007)], [Dong et

al., PLoS ONE 8 (2013)], [Basiri et al., Phys. Rev. E 98 (2018)], [Tyloo and D., J. Phys. Complexity

2 (2021)], ...

Maximum likelihood/cost minimization: [Hoang et al., Phys. Rev. E 99 (2019)], [Makarov

et al., J. Neurosci. Methods 144(2005)], [Shandilya and Timme, New J. Phys. 13 (2011)], [Panaggio

et al., Chaos 29 (2019)], ...

Statistical properties of trajectories: [Dahlhaus et al., J. Neurosci. Methods 77 (1997)],

[Sameshima and Baccalá, J. Neurosci. Methods 94 (1999)], [Ren et al., Phys. Rev. Lett. 104 (2010)],

[Newman, Nature Physics 14 (2018)], [Peixoto, Phys. Rev. Lett. 123 (2019)], ...
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Power flow equations

Power flow equations:

Pj =
∑
k

VjVk [Bjk sin(θj − θk) + Gjk cos(θj − θk)]︸ ︷︷ ︸
Pe,jk

Qj =
∑
k

VjVk [Bjk cos(θj − θk)− Gjk sin(θj − θk)]

J. Machowski, J. W. Bialek, and J. R. Bumby, Power System Dynamics, 2nd ed. (Wiley, Chichester, U.K, 2008).
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Simplified problem

Pj =
∑
k

VjVk [Bjk sin(θj − θk) + Gjk cos(θj − θk)]

In transmission grids (high voltage):

Vj ≈ constant

Gjk ≈ 0

Pj =
∑
k

Bjk sin(θj − θk)

The voltage phases evolve following the mismatch of the latter equation (swing
equations).

J. Machowski, J. W. Bialek, and J. R. Bumby, Power System Dynamics, 2nd ed. (Wiley, Chichester, U.K, 2008).
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Network inference from ambient noise
Considering deviations from the fixed point

x(t) = θ(t)− θ∗

The dynamics is approximated as

ẋ ≈ J x+ ξ

where

Jij =

{
Bij cos(θ

∗
i − θ∗j ) , i ̸= j ,

−
∑

k Bik cos(θ
∗
i − θ∗k) , i = j ,

and ξ is the noise.
Remark: The Jacobian J is a (weighted) Laplacian matrix, in particular symmetric.
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Correlated noise and two-point correlator

Consider a time-correlated noise ξ:

E[ξj(t)] = 0 E[ξj(t)ξk(t ′)] = δjke
−τ0|t−t′|

and look at E[ẋj ẋk ].

Then for τ0 ≪ 1,

E[ẋj ẋk ] = δjk +
∞∑

m=1

(−τ0)
m (Jm)jk

and for τ0 ≫ 1,

E[ẋj ẋk ] =
1

n
−

∞∑
m=1

(−τ0)
−m

(
J −m

)
jk
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Distribution grid vs. transmission grid

Relevance:

▶ Line parameters are often not known.

▶ Sometimes even the structure is not
clear.

▶ Grid operators are interested in
accurate models.

▶ By 2027, 80% of deployment in CH.

Pros:

▶ Structure is usually simple (tree).

Cons:

▶ Data quality.

▶ Actual data availability.
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One among many algorithms

Under ”reasonable” assumptions, Park, Deka, and Chertkov (2018) can estimate the

inverse of the resistance and reactance Laplacian matrices: L†1/r and L†1/x .
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Linear coupled power flow (LC-PF)

Pj =
∑
k

Bjk(θj − θk) + Gjk(Vj − Vk) P = L1/xθ + L1/rV

Qj =
∑
k

Bjk(Vj − Vk)− Gjk(θj − θk) Q = L1/xV − L1/rθ

leads to

V = L†1/rP+ L†1/xQ

θ = L†1/xP− L†1/rQ

D. Deka, M. Chertkov, and S. Backhaus, IEEE TCNS (2017).
13 / 26



Introduction Transmission grid inference Distribution grid inference Conclusion

Linear coupled power flow (LC-PF)

Pj =
∑
k

Bjk(θj − θk) + Gjk(Vj − Vk) P = L1/xθ + L1/rV

Qj =
∑
k

Bjk(Vj − Vk)− Gjk(θj − θk) Q = L1/xV − L1/rθ

leads to

V = L†1/rP+ L†1/xQ

θ = L†1/xP− L†1/rQ

D. Deka, M. Chertkov, and S. Backhaus, IEEE TCNS (2017).
13 / 26



Introduction Transmission grid inference Distribution grid inference Conclusion

Extracting information from correlations

Taking the voltage to power correlations:

E(VjPk) = (L†1/r )jkE(P
2
k ) + (L†1/x)jkE(PkQk)

E(VjQk) = (L†1/r )jkE(PkQk)− (L†1/x)jkE(Q
2
k )

All (co)variances can be estimated empirically.

Then one can solve for L†1/r and L†1/x .

S. Park, D. Deka, and M. Chertkov, Proceeding of PSCC (2018)
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Effective resistance

Hence, we get the effective resistance or resistance dis-
tance:

dr (i , j) = (L†1/r )ii + (L†1/r )jj − 2(L†1/r )ij .

Iin = 1 [A]

Iout = -1 [A]

U

As the graph is a tree,

dr (i , j) =
∑
e∈Pij

Re

D. J. Klein and M. Randić, J. Math. Chem. 12 (1993)
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Recursive grouping algorithm
Given pairwise distances d(a, b) and assuming the graph is a tree. Compute

Φabc = d(a, c)− d(b, c)

a

b

c
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Recursive grouping algorithm: parent-child

If d(a, b) = Φabc for all c ,then b is a parent to a.

a

b

c
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Recursive grouping algorithm: siblings
If Φabc = Φabc′ for all c , c

′, then a and b are siblings.

a b

c

Then a new parent h is added,

d(a, h) =
1

2
(d(a, b) + Φabc) d(c , h) = d(a, c)− d(a, h)

18 / 26
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Recursive grouping algorithm

S. Park, D. Deka, and M. Chertkov, Proceeding of PSCC (2018)
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Let’s run the algo on real data

Semi-synthetic data:

Smart meter measurements from
GOFLEX...

... on a standard distribution grid.
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Khan and Hayes, 2022 IEEE PESGM (2022), doi: 10.1109/PESGM48719.2022.9916806
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Issue...

Park et al. (2018) require

E(PjPk) = 0 ,

which is not always true.
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Let’s go back to synthetic data
Same grid, but Gaussian time series
with controlled correlations.
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There is hope...

Recursive grouping algorithm

a

b

c

a b

c
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(Un)luckily...

Correlation matrix - active power
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Work in progress...
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Conclusion

Main lesson learned:

▶ We are working at a sensitive spot in terms of SNR.

▶ Data are hard to find actually!

https://xkcd.com/435/
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Details

Correlated noise

Idea: Extract information from the noise.

Consider a time-correlated noise ξ:

E[ξj(t)] = 0 E[ξj(t)ξk(t ′)] = δjke
−τ0|t−t′|

Measure its impact at the vertices x (actually we look at ẋ).

1 / 3



Details

Correlated noise

Idea: Extract information from the noise.

Consider a time-correlated noise ξ:

E[ξj(t)] = 0 E[ξj(t)ξk(t ′)] = δjke
−τ0|t−t′|

Measure its impact at the vertices x (actually we look at ẋ).
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Details

Two-point correlators

The Jacobian’s ℓ-th eigenvalue and eigenvector are λℓ and u(ℓ).

Then for λℓτ0 < 1,

E[ẋj ẋk ] = δjk −
n∑

ℓ=2

u
(ℓ)
j u

(ℓ)
k

λℓτ0
1 + λℓτ0

= δjk −
n∑

ℓ=2

u
(ℓ)
j u

(ℓ)
k λℓτ0

∞∑
m=0

(−λℓτ0)
m

= δjk +
∞∑

m=1

(−τ0)
m

n∑
ℓ=2

u
(ℓ)
j λm

ℓ u
(ℓ)
k

= δjk +
∞∑

m=1

(−τ0)
m (Jm)jk
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Details

Results

In practice, we can only determine existence of edges, not their weight.
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