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The graph impacts dynamics... and vice versa

W.-X. Wang, Y.-C. Lai, and C. Grebogi, Phys. Rep. 644 (2016).

I. Brugere, B. Gallagher, and T. Y. Berger-Wolf, ACM Comput. Surv. 51 (2018).
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Various approaches

Probing: [Yu et al., Phys. Rev. Lett. 97 (2006)], [Timme, Phys. Rev. Lett. 98 (2007)], [Dong et

al., PLoS ONE 8 (2013)], [Basiri et al., Phys. Rev. E 98 (2018)], [Tyloo and D., J. Phys. Complexity

2 (2021)], ...

Maximum likelihood/cost minimization: [Hoang et al., Phys. Rev. E 99 (2019)], [Makarov

et al., J. Neurosci. Methods 144(2005)], [Shandilya and Timme, New J. Phys. 13 (2011)], [Panaggio

et al., Chaos 29 (2019)], ...

Statistical properties of trajectories: [Dahlhaus et al., J. Neurosci. Methods 77 (1997)],

[Sameshima and Baccalá, J. Neurosci. Methods 94 (1999)], [Ren et al., Phys. Rev. Lett. 104 (2010)],

[Newman, Nature Physics 14 (2018)], [Peixoto, Phys. Rev. Lett. 123 (2019)], ...
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Notations

A graph G = (V ,E )

The adjacency matrix A ∈ Rn×n

The degree matrix D ∈ Rn×n

The Laplacian matrix L = D − A
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Power grid analysis

In AC power grids, all quantities become complex:

▶ Voltage: V j = Vje
iωj

▶ Current: I j = Ije
iϕj

▶ Power: Sj = Pj + iQj

▶ Impedance: Zjk = Rjk + iXjk

▶ Admittance: Yjk = 1/Zjk = Gjk + iBjk
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Power flow equations

Power flow equations:

Pj =
∑
k

VjVk [Bjk sin(θj − θk) + Gjk cos(θj − θk)]︸ ︷︷ ︸
Pe,jk

Qj =
∑
k

VjVk [Bjk cos(θj − θk)− Gjk sin(θj − θk)]

J. Machowski, J. W. Bialek, and J. R. Bumby, Power System Dynamics, 2nd ed. (Wiley, Chichester, U.K, 2008).
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The swing equations

θ̇j = Pj −
∑
k

Pe,jk

J. Machowski, J. W. Bialek, and J. R. Bumby, Power System Dynamics, 2nd ed. (Wiley, Chichester, U.K, 2008).
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Grid frequency

www.swissgrid.ch
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Transmission grid inference

Melvyn Tyloo
Uni Exeter

Philippe Jacquod
HES-SO Sion

doi.org/10.1063/5.0058739
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Simplified problem

Pj =
∑
k

VjVk [Bjk sin(θj − θk) + Gjk cos(θj − θk)]

In transmission grids (high voltage):

Vj ≈ constant

Gjk ≈ 0

Pm,j =
∑
k

Bjk sin(θj − θk)
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Simplifed problem (bis)

The swing equations look like the Kuramoto model:

θ̇j = Pj −
∑
k

Bjk sin(θj − θk)

Most likely converges to a steady state θ∗.

S. H. Strogatz, Physica D 143 (2000)

F. Dörfler and F. Bullo, Automatica 50 (2014)
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Network inference from ambient noise

Considering deviations from the fixed point

x(t) = θ(t)− θ∗

The dynamics is approximated as

ẋ ≈ J x+ ξ

Remark: The Jacobian J is a (weighted) Laplacian matrix, in particular symmetric.
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Correlated noise

Idea: Extract information from the noise.

Consider a time-correlated noise ξ:

E[ξj(t)] = 0

E[ξj(t)ξk(t ′)] = δjke
−τ0|t−t′|

Measure its impact at the vertices x (actually we look at ẋ).
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Two-point correlators

The Jacobian’s ℓ-th eigenvalue and eigenvector are λℓ and u(ℓ).

Then for λℓτ0 < 1,

E[ẋj ẋk ] = δjk −
n∑

ℓ=2

u
(ℓ)
j u

(ℓ)
k

λℓτ0
1 + λℓτ0

= δjk −
n∑

ℓ=2

u
(ℓ)
j u

(ℓ)
k λℓτ0

∞∑
m=0

(−λℓτ0)
m

= δjk +
∞∑

m=1

(−τ0)
m

n∑
ℓ=2

u
(ℓ)
j λm

ℓ u
(ℓ)
k

= δjk +
∞∑

m=1

(−τ0)
m (Jm)jk
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Results

In practice, we can only determine existence of edges, not their weight.
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Distribution grid vs. transmission grid

Relevance:

▶ Line parameters are often not known.

▶ Sometimes even the structure is not
clear.

▶ Grid operators are interested in
accurate models.

▶ By 2027, 80% of deployment.

Pros:

▶ Structure is usually simple
(tree).

Cons:

▶ Actual data availability.

▶ Data quality.
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One among many algorithms

Under ”reasonable” assumptions, Park, Deka, and Chertkov (2018) can estimate the

inverse of the resistance and reactance Laplacian matrices: L†r and L†x .

E(VjPk) = (L†r )jkE(P2
k ) + (L†x)jkE(PkQk)

E(VjQk) = (L†r )jkE(PkQk) + (L†x)jkE(Q2
k )

S. Park, D. Deka, and M. Chertkov, Proceeding of PSCC (2018)
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Effective resistance

Hence, we get the effective resistance:

dr (i , j) = (L†)ii + (L†)jj − 2(L†)ij

which is a distance.
As the graph is a tree,

Ωij =
∑
e∈Pij

Re
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Recursive grouping algorithm
Given pairwise distances d(a, b) and assuming the graph is a tree. Compute

Φabc = d(a, c)− d(b, c)

Then

1. If d(a, b) = Φabc for all c ,then b → a.

2. If Φabc = Φabc ′ for all c , c
′, then a ↔ b.

In case 2., a new parent h is added. Then

d(a, h) =
1

2
(d(a, b) + Φabc) d(c , h) = d(a, c)− d(a, h)

D. J. Klein and M. Randić, J. Math. Chem. 12 (1993)
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Recursive grouping algorithm

S. Park, D. Deka, and M. Chertkov, Proceeding of PSCC (2018)
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Issue...

Park et al. (2018) require

E(PjPk) = 0 ,

which is not always true.

Idea: Sub-sampling
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Our hope
Correlation does not impedes all resistances.
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Unfortunately...
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Conclusion

Correlations carry information about the underlying network...

but too much correlation impedes inference.

Thank you!
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GeoCoW 2026

Geometry of Complex Webs

November 1 - 6, 2026

Les Diablerets

https://swissmaprs.ch/events/

geocow-geometry-of-complex-webs/
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