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The graph impacts dynamics... and vice versa
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W.-X. Wang, Y.-C. Lai, and C. Grebogi, Phys. Rep. 644 (2016).
|. Brugere, B. Gallagher, and T. Y. Berger-Wolf, ACM Comput. Surv. 51 (2018).
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Various approaches

Probing: [Yu et al., Phys. Rev. Lett. 97 (2006)], [Timme, Phys. Rev. Lett. 98 (2007)], [Dong et
al., PLoS ONE 8 (2013)], [Basiri et al., Phys. Rev. E 98 (2018)], [Tyloo and D., J. Phys. Complexity
2 (2021)], ...

Maximum likelihood/cost minimization: [Hoang et al., Phys. Rev. E 99 (2019)], [Makarov
et al., J. Neurosci. Methods 144(2005)], [Shandilya and Timme, New J. Phys. 13 (2011)], [Panaggio
et al., Chaos 29 (2019)], ...

Statistical properties of trajectories: [Dahlhaus et al., J. Neurosci. Methods 77 (1997)],

[Sameshima and Baccald, J. Neurosci. Methods 94 (1999)], [Ren et al., Phys. Rev. Lett. 104 (2010)],
[Newman, Nature Physics 14 (2018)], [Peixoto, Phys. Rev. Lett. 123 (2019)], ...
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Notations

A graph
The adjacency matrix
The degree matrix

The Laplacian matrix

g=(V,E)
AeRM<n

D € R™"
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Power grid analysis

In AC power grids, all quantities become complex:
> Voltage: V; = \/J-ei‘*’f
» Current: I = Ijei¢f
» Power: S; = P; + iQ;
» Impedance: Zjx = Rjx + iXjk
> Admittance: Yy =1/Zj = Gj + iBjk
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Power flow equations
Pe,]’z Pe,j3
Power flow equations: \ Peja
Pe,jl \./

P; = Zijk [Bjk sin(0; — 0x) + Gji cos(0; — 0)]

k P
Q= Z V; Vi [Bjk cos(0; — bk) — Gjisin(6; — 6] h h
k

T

J. Machowski, J. W. Bialek, and J. R. Bumby, Power System Dynamics, 2nd ed. (Wiley, Chichester, U.K, 2008).
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The swing equations

FREQUENCE Source: RTE

6= Pi =) Pejk
k

J. Machowski, J. W. Bialek, and J. R. Bumby, Power System Dynamics, 2nd ed. (Wiley, Chichester, U.K, 2008).
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Current frequency 49.991 Hz
Current grid time deviation  13.195s
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-e- Frequency response
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Simplified problem

Pi = ViVi[Bjsin(6; — 0i) + Gjx cos(8; — Oy)]
k
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Simplified problem

Pi = ViVi[Bjsin(6; — 0i) + Gjx cos(8; — Oy)]
k

In transmission grids (high voltage):

VJ- ~ constant
Gjx ~ 0

PmJ = Z Bjk Sin(ej — 9k)
k
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Simplifed problem (bis)

The swing equations look like the Kuramoto model:

éj = PJ — Z Bjk Sin(ej — 9/()
k

S. H. Strogatz, Physica D 143 (2000)
F. Dorfler and F. Bullo, Automatica 50 (2014)
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Simplifed problem (bis)

The swing equations look like the Kuramoto model:

éj = PJ — Z Bjk Sin(ej — 0/()
k

Most likely converges to a steady state 6*.

S. H. Strogatz, Physica D 143 (2000)
F. Dorfler and F. Bullo, Automatica 50 (2014)
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Network inference from ambient noise

Considering deviations from the fixed point

x(t) =0(t) — 6"
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Network inference from ambient noise

Considering deviations from the fixed point
x(t) =0(t) — 6"
The dynamics is approximated as
x~JIx+¢§

Remark: The Jacobian 7 is a (weighted) Laplacian matrix, in particular symmetric.

13/27



Introduction Transmission grid inference Distribution grid inference Conclusion
00000000 0000@00 000000000 00
:

Correlated noise

Idea: Extract information from the noise.
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Correlated noise

Idea: Extract information from the noise.

Consider a time-correlated noise &:

E[5(t)] =0
E[Ej(t)fk(tl)] = 5jke—‘ro|t—t’|

Measure its impact at the vertices x (actually we look at x).
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Two-point correlators

The Jacobian’s (-th eigenvalue and eigenvector are \; and u(®).

Then for \jrg < 1,

.. & AT 2 > m
Sl = - 3 a0 T 5= Sl S (e
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Results

In practice, we
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Distribution grid vs. transmission grid

Relevance:
Pros:

» Line parameters are often not known. . .
» Structure is usually simple

» Sometimes even the structure is not (tree).

clear.
Cons:

» Grid operators are interested in I
P > Actual data availability.

accurate models.

> itv.
> By 2027, 80% of deployment. Data quality
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One among many algorithms

Under " reasonable” assumptions, Park, Deka, and Chertkov (2018) can estimate the
inverse of the resistance and reactance Laplacian matrices: L]; and LI.

E(V;Pi) = (LDE(PR) + (LL)E( Pk Qi)
E(V;Qk) = (LDKE(PxQx) + (L) E(Q7)

S. Park, D. Deka, and M. Chertkov, Proceeding of PSCC (2018)
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Effective resistance

Hence, we get the effective resistance:
dr(i,j) = (L") + (LT); — 2(L");

which is a distance.
As the graph is a tree,

Qj=> Re

EEP,'J'
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Recursive grouping algorithm
Given pairwise distances d(a, b) and assuming the graph is a tree. Compute

(Dabc = d(aa C) - d(ba C)

Then
1. If d(a, b) = ®,pc for all ¢ ,then b — a.
2. If ®,pe = D,per forall ¢, c, then a - b.

In case 2., a new parent h is added. Then

d(a, h) = %(d(a, b) + ape) d(c, h) = d(a,c) — d(a, h)

D. J. Klein and M. Randi¢, J. Math. Chem. 12 (1993)
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Recursive grouping algorithm

S. Park, D. Deka, and M. Chertkov, Proceeding of PSCC (2018)
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Issue...

Correlation matrix - active power
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Our hope

Correlation does not impedes all resistances.

Gaussian data with 0.50 correlation between sites 29 and 31
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Unfortunately...
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Walenstadt data - active power
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Conclusion

Correlations carry information about the underlying network...
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Conclusion

Correlations carry information about the underlying network...

but too much correlation impedes inference.
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Conclusion

Correlations carry information about the underlying network...

but too much correlation impedes inference.

Thank you!
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GeoCoW 2026

Geometry of Complex Webs
November 1 - 6, 2026
Les Diablerets

https://swissmaprs.ch/events/
geocow-geometry-of-complex-webs/
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