

Robin Delabays

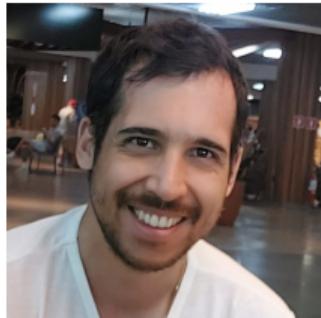
www.delabays.xyz

Hes·so VALAIS
WALLIS

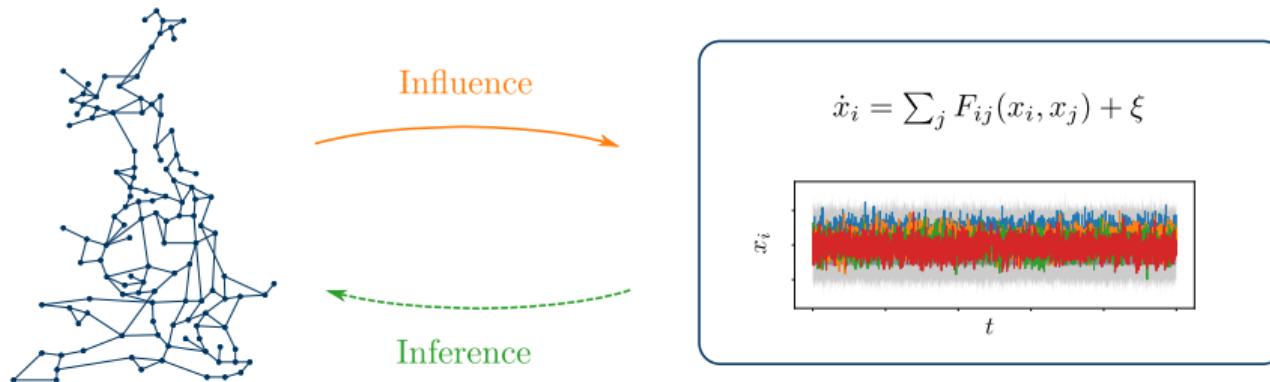
π School of Engineering

Data-driven inference of power grids: challenges and opportunities

People



The graph impacts dynamics... and vice versa



W.-X. Wang, Y.-C. Lai, and C. Grebogi, *Phys. Rep.* **644** (2016).

I. Brugere, B. Gallagher, and T. Y. Berger-Wolf, *ACM Comput. Surv.* **51** (2018).

Various approaches

Probing: [Yu et al., *Phys. Rev. Lett.* **97** (2006)], [Timme, *Phys. Rev. Lett.* **98** (2007)], [Dong et al., *PLoS ONE* **8** (2013)], [Basiri et al., *Phys. Rev. E* **98** (2018)], [Tyloo and D., *J. Phys. Complexity* **2** (2021)], ...

Maximum likelihood/cost minimization: [Hoang et al., *Phys. Rev. E* **99** (2019)], [Makarov et al., *J. Neurosci. Methods* **144**(2005)], [Shandilya and Timme, *New J. Phys.* **13** (2011)], [Panaggio et al., *Chaos* **29** (2019)], ...

Statistical properties of trajectories: [Dahlhaus et al., *J. Neurosci. Methods* **77** (1997)], [Sameshima and Baccalá, *J. Neurosci. Methods* **94** (1999)], [Ren et al., *Phys. Rev. Lett.* **104** (2010)], [Newman, *Nature Physics* **14** (2018)], [Peixoto, *Phys. Rev. Lett.* **123** (2019)], ...

Notations

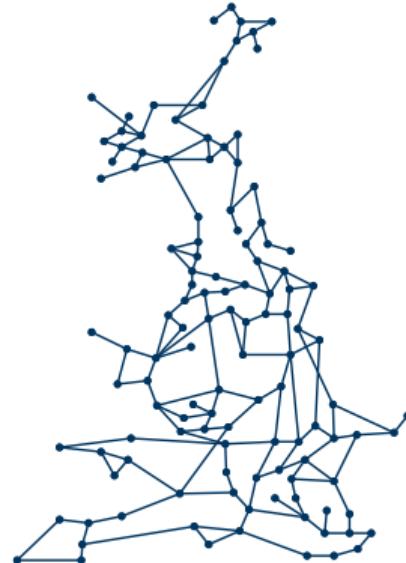
A graph

$$\mathcal{G} = (V, E)$$

The adjacency matrix $A \in \mathbb{R}^{n \times n}$

The degree matrix $D \in \mathbb{R}^{n \times n}$

The Laplacian matrix $L = D - A$



Power grid analysis

In AC power grids, all quantities become complex:

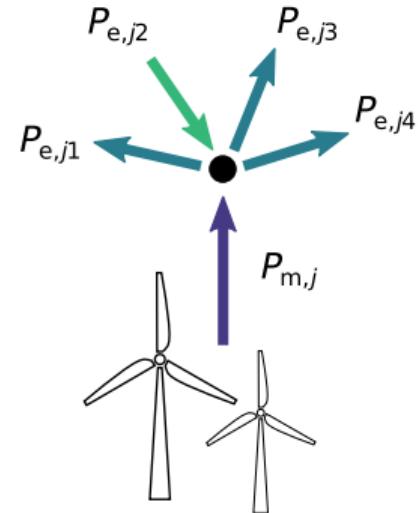
- ▶ Voltage: $\underline{V}_j = V_j e^{i\omega_j}$
- ▶ Current: $\underline{I}_j = I_j e^{i\phi_j}$
- ▶ Power: $S_j = P_j + iQ_j$
- ▶ Impedance: $Z_{jk} = R_{jk} + iX_{jk}$
- ▶ Admittance: $Y_{jk} = 1/Z_{jk} = G_{jk} + iB_{jk}$

Power flow equations

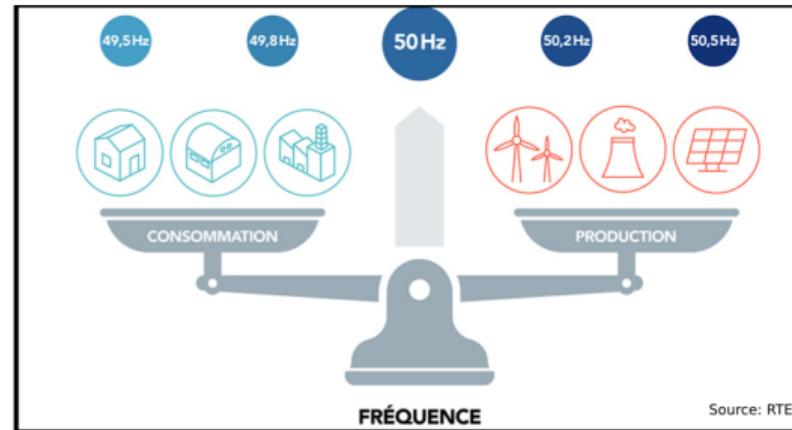
Power flow equations:

$$P_j = \sum_k \underbrace{V_j V_k [B_{jk} \sin(\theta_j - \theta_k) + G_{jk} \cos(\theta_j - \theta_k)]}_{P_{e,jk}}$$

$$Q_j = \sum_k V_j V_k [B_{jk} \cos(\theta_j - \theta_k) - G_{jk} \sin(\theta_j - \theta_k)]$$



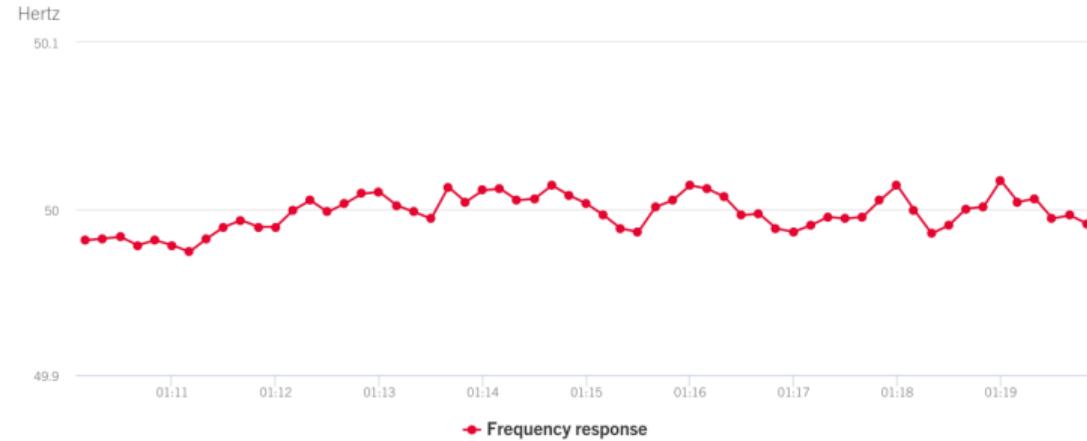
The swing equations



$$\dot{\theta}_j = P_j - \sum_k P_{e,jk}$$

Grid frequency

Current frequency 49.991 Hz
Current grid time deviation 13.195 s



Transmission grid inference

Melvyn Tyloo
Uni Exeter

Philippe Jacquod
HES-SO Sion

doi.org/10.1063/5.0058739

Simplified problem

$$P_j = \sum_k V_j V_k [B_{jk} \sin(\theta_j - \theta_k) + G_{jk} \cos(\theta_j - \theta_k)]$$

Simplified problem

$$P_j = \sum_k V_j V_k [B_{jk} \sin(\theta_j - \theta_k) + G_{jk} \cos(\theta_j - \theta_k)]$$

In transmission grids (high voltage):

$$V_j \approx \text{constant}$$

$$G_{jk} \approx 0$$

$$P_{m,j} = \sum_k B_{jk} \sin(\theta_j - \theta_k)$$

Simplified problem (bis)

The swing equations look like the Kuramoto model:

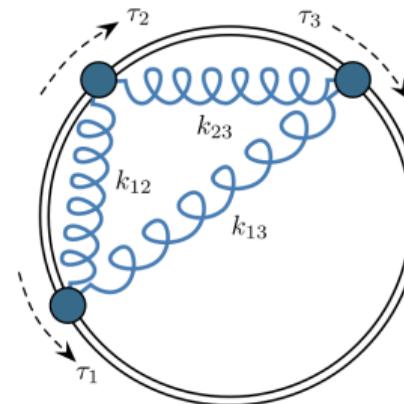
$$\dot{\theta}_j = P_j - \sum_k B_{jk} \sin(\theta_j - \theta_k)$$

Simplified problem (bis)

The swing equations look like the Kuramoto model:

$$\dot{\theta}_j = P_j - \sum_k B_{jk} \sin(\theta_j - \theta_k)$$

Most likely converges to a steady state θ^* .



Network inference from ambient noise

Considering deviations from the fixed point

$$\mathbf{x}(t) = \boldsymbol{\theta}(t) - \boldsymbol{\theta}^*$$

Network inference from ambient noise

Considering deviations from the fixed point

$$\mathbf{x}(t) = \boldsymbol{\theta}(t) - \boldsymbol{\theta}^*$$

The dynamics is approximated as

$$\dot{\mathbf{x}} \approx \mathcal{J}\mathbf{x} + \boldsymbol{\xi}$$

Remark: The Jacobian \mathcal{J} is a (weighted) Laplacian matrix, in particular symmetric.

Correlated noise

Idea: Extract information from the noise.

Correlated noise

Idea: Extract information from the noise.

Consider a time-correlated noise ξ :

$$\mathbb{E}[\xi_j(t)] = 0$$

$$\mathbb{E}[\xi_j(t)\xi_k(t')] = \delta_{jk} e^{-\tau_0|t-t'|}$$

Measure its impact at the vertices \mathbf{x} (actually we look at $\dot{\mathbf{x}}$).

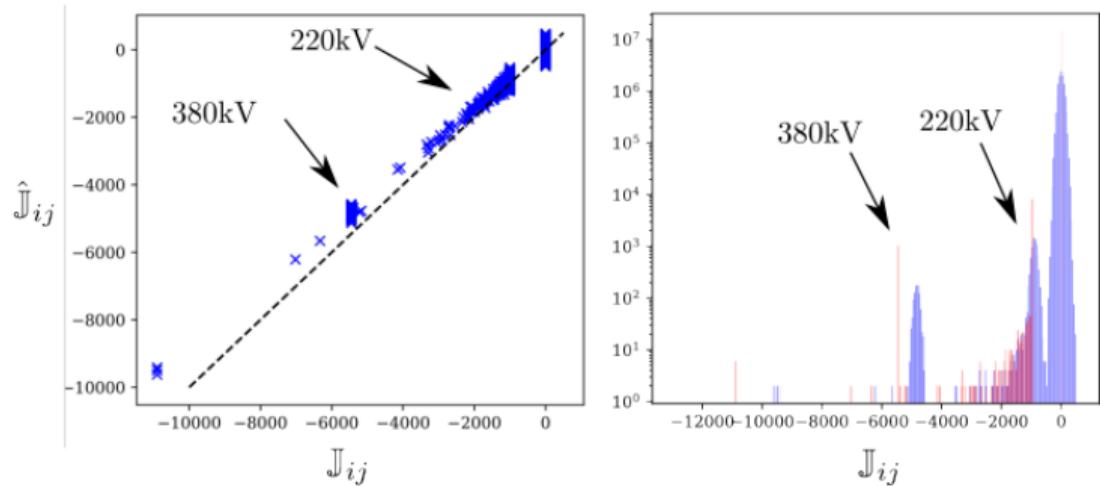
Two-point correlators

The Jacobian's ℓ -th eigenvalue and eigenvector are λ_ℓ and $\mathbf{u}^{(\ell)}$.

Then for $\lambda_\ell \tau_0 < 1$,

$$\begin{aligned}\mathbb{E}[\dot{x}_j \dot{x}_k] &= \delta_{jk} - \sum_{\ell=2}^n \mathbf{u}_j^{(\ell)} \mathbf{u}_k^{(\ell)} \frac{\lambda_\ell \tau_0}{1 + \lambda_\ell \tau_0} = \delta_{jk} - \sum_{\ell=2}^n \mathbf{u}_j^{(\ell)} \mathbf{u}_k^{(\ell)} \lambda_\ell \tau_0 \sum_{m=0}^{\infty} (-\lambda_\ell \tau_0)^m \\ &= \delta_{jk} + \sum_{m=1}^{\infty} (-\tau_0)^m \sum_{\ell=2}^n \mathbf{u}_j^{(\ell)} \lambda_\ell^m \mathbf{u}_k^{(\ell)} \\ &= \delta_{jk} + \sum_{m=1}^{\infty} (-\tau_0)^m (\mathcal{J}^m)_{jk}\end{aligned}$$

Results



In practice, we can only determine existence of edges, not their weight.

Distribution grid inference

Marc Gillioz
HES-SO Sion

Distribution grid vs. transmission grid

Relevance:

- ▶ Line parameters are often not known.
- ▶ Sometimes even the structure is not clear.
- ▶ Grid operators are interested in accurate models.
- ▶ By 2027, 80% of deployment.

Pros:

- ▶ Structure is usually simple (tree).

Cons:

- ▶ Actual data availability.
- ▶ Data quality.

One among many algorithms

Under "**reasonable**" assumptions, Park, Deka, and Chertkov (2018) can estimate the inverse of the resistance and reactance Laplacian matrices: L_r^\dagger and L_x^\dagger .

$$\mathbb{E}(V_j P_k) = (L_r^\dagger)_{jk} \mathbb{E}(P_k^2) + (L_x^\dagger)_{jk} \mathbb{E}(P_k Q_k)$$

$$\mathbb{E}(V_j Q_k) = (L_r^\dagger)_{jk} \mathbb{E}(P_k Q_k) + (L_x^\dagger)_{jk} \mathbb{E}(Q_k^2)$$

Effective resistance

Hence, we get the **effective resistance**:

$$d_r(i, j) = (L^\dagger)_{ii} + (L^\dagger)_{jj} - 2(L^\dagger)_{ij}$$

which is a distance.

As the graph is a tree,

$$\Omega_{ij} = \sum_{e \in P_{ij}} R_e$$

Recursive grouping algorithm

Given pairwise distances $d(a, b)$ and assuming **the graph is a tree**. Compute

$$\Phi_{abc} = d(a, c) - d(b, c)$$

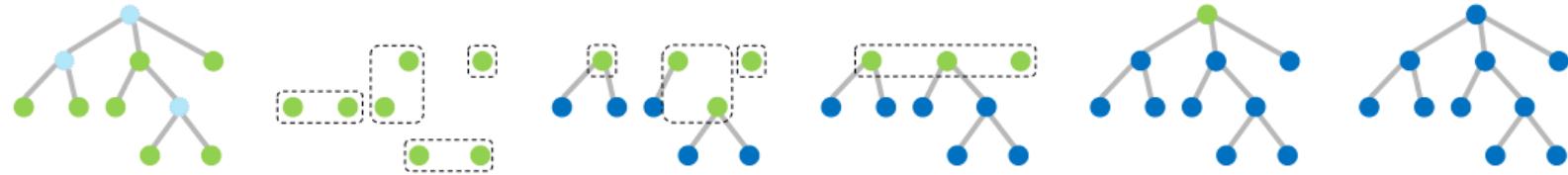
Then

1. If $d(a, b) = \Phi_{abc}$ for all c , then $b \rightarrow a$.
2. If $\Phi_{abc} = \Phi_{abc'}$ for all c, c' , then $a \leftrightarrow b$.

In case 2., a new parent h is added. Then

$$d(a, h) = \frac{1}{2}(d(a, b) + \Phi_{abc}) \quad d(c, h) = d(a, c) - d(a, h)$$

Recursive grouping algorithm



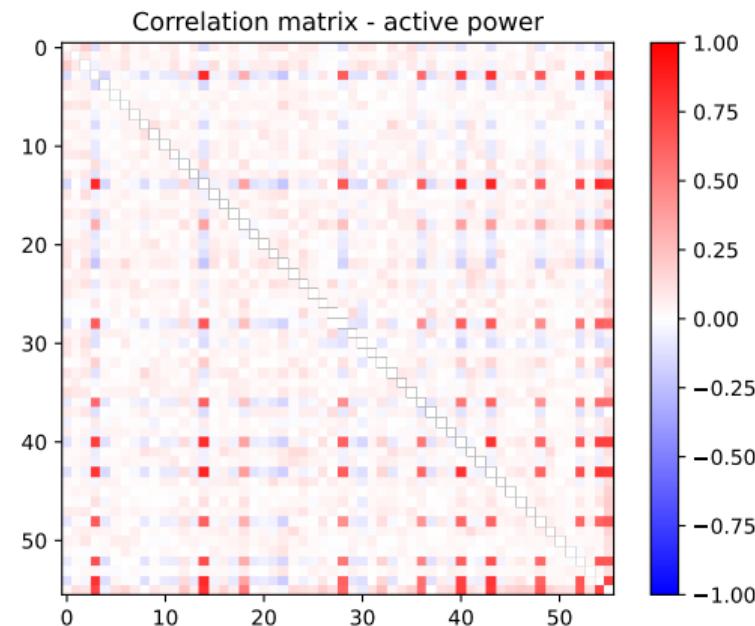
Issue...

Park et al. (2018) require

$$\mathbb{E}(P_j P_k) = 0,$$

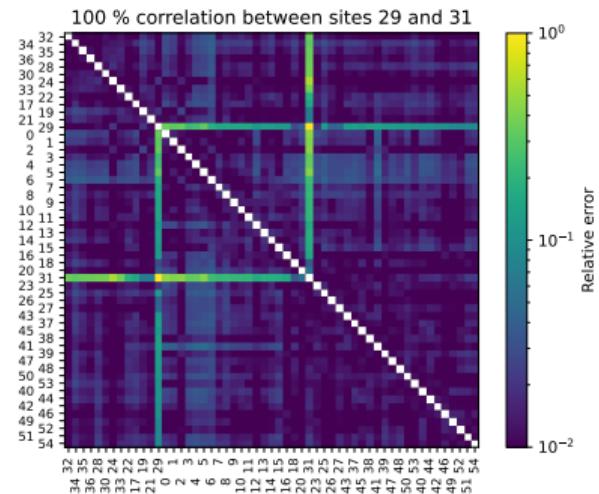
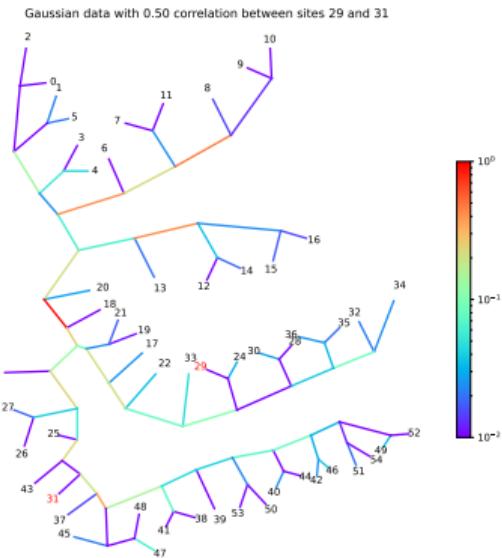
which is not always true.

Idea: Sub-sampling

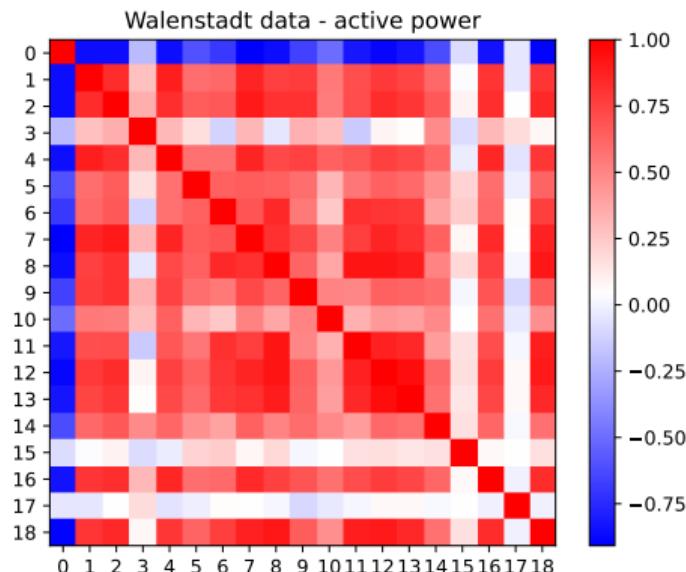


Our hope

Correlation does not impedes all resistances.



Unfortunately...



Conclusion

Correlations carry information about the underlying network...

Conclusion

Correlations carry information about the underlying network...

but too much correlation impedes inference.

Conclusion

Correlations carry information about the underlying network...

but too much correlation impedes inference.

Thank you!

GeoCoW 2026

Geometry of Complex Webs

November 1 - 6, 2026

Les Diablerets

[https://swissmaprs.ch/events/
geocow-geometry-of-complex-webs/](https://swissmaprs.ch/events/geocow-geometry-of-complex-webs/)

