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Introduction

This is a joint work with: Dr. Peach and Prof. Barahona at Imperial College London.

It has been published in three papers, some years ago:

[1] Peach, R. L., AA, & Barahona, M. (2020). Semi-supervised classification on graphs using explicit
diffusion dynamics. Foundations of Data Science, 2(1), 19.

[2] AA, Peach, R. L., & Barahona, M. (2020). Scale-dependent measure of network centrality from diffusion
dynamics. Physical Review Research, 2(3), 033104.

[3] Peach, AA, R. L., & Barahona, M. (2022). Relative, local and global dimension in complex networks.
Nature Communications, 13(1), 1-11

Today | will show you what we did in this “trilogy” of papers



Recap on diffusion

Continuous diffusion equation is:
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Solution is given by the Green’s function, or heat kernel:
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Solution for any initial condition is sum of Green functions on non-compact spaces, but tricks can
be used on compact spaces (method of mirror, etc...)



Recap on diffusion

On infinite line, it is simple, starting from a point mass:




Recap on diffusion

At the origin of the diffusion, the mass monotonically decays:
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Recap on diffusion

For any other position, it does not, and shows a maximum:
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Recap on diffusion

The amplitude and time of the peak depends on the distance to the source,
the further away from the source, the later and smaller the peak:
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Recap on diffusion

On compact spaces, like interval, diffusion will look different:




Recap on diffusion

Near the source, we have the same behaviour as in infinite line,
as the walls are “far”:

. Plateaus at tati
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Recap on diffusion
But close to the boundary, we instead have monotonically increasing diffusion:

t=0 y | - -
0 0 0
Pro bability Never exhibits any in transient
mass response

time, t

-> This change of behaviour of diffusion encodes information about the boundaries



Recap on graph theory and random walks

* |ncidence matrix: BZ. (i) = 1 ifnode |is head of edge (ij)

Bj,(z.j) — — 1 ifnode jis head of edge (ij) \ /

» Adjacency matrix Aij = 1 ifnodeiis connected to node j \

We can form discrete random walk: Pt+1 — Apt ]

+ Graph laplacian: L =B"B=D — A

| dp(t) __
We can form continuous random walk: dt Lp( )



From continuous diffusion to graph diffusion

Op(x,t :
We can go from continuous space: p(T) — O‘Vzp(ajj t)
op(t
to graphs: I(;—}(‘f) = —Lp(t) with graph Laplacian: L =D — A

For an initial condition at node i, the solution at the node j is the heat kernel:
. _tL
pj(t | i) = (e7"7)ij

Discretising the previous example as a line graph will give the same results, but this diffusion
equation works for any graph.

-> From these ‘diffusion trajectories’ on nodes, we can solve the heat equation and directly
estimate peak time and amplitude, if it exists before a given “time horizon”.



How to use this observation to study graphs?

Given any initial condition (or node vector) on a graph and a diffusion-like process, we can
compute for each node the time and amplitude of a 'transient peak’. With this information,
we have three ‘options’:

1. Use amplitude: Graph Diffusion Reclassification [1]
2. Use time: Multiscale centrality [2]
3. Use time and amplitude: Network dimensionality [3]

[1] Peach, R. L., AA, & Barahona, M. (2020). Semi-supervised classification on graphs using explicit
diffusion dynamics. Foundations of Data Science, 2(1), 19.

[2] AA, Peach, R. L., & Barahona, M. (2020). Scale-dependent measure of network centrality from diffusion
dynamics. Physical Review Research, 2(3), 033104.

[3] Peach, AA, R. L., & Barahona, M. (2022). Relative, local and global dimension in complex networks.
Nature Communications, 13(1), 1-11



1. Using amplitude

Graph Convolutional Neural Network (GCN)

- takes a graph with node features and labels on subset of nodes
- Try to predict missing labels with two layers:

l ; I:m] — softmax (ﬁ ReLU (ﬁ X w“) wlj |

It works by propagating feature signal through the graph with adjacency matrix and

learning weights matrices to predict the labels.

The signal propagation is a one-step random walk, that can be extended with diffusion.
Instead, we use diffusion as a post processing step to “correct mistakes”.



(a) (Single Source) Overshooting
1.0 0.05

Graph Diffusion Reclassification o o o

Node classifier such as GCN provide probability 320

distribution on nodes to belong to each class. ‘ ‘ /); ‘
N

For each class, we diffuse these distributions, and ! \/\\ y

reclassify a node if a transient peak in another class 4% v X

is largest.

We can improve classification accuracies:

Method Citeseer Cora Pubmed Wikipedia
Planetoid 64.7 75.7 72.2 -

GCN 70.3 81.1 79.0 39.2
'GDR (GCN)  70.8 (+0.5) 82.2 (+1.1) 79.4 (+0.4) 395 (+0.3)

L

: : : e Overshooting o e
Prior from features Diffusion of prior detection Re-classification



Reclassifying the Cora dataset

Diffusion of node classes:

Well classified node:

Reclassified node:
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2. Using time

Graph centrality measures:

There exists many measures assigning a number to each
node, the higher the more ‘central’.

Here are a few simple ones: e gk T R %
- Degree: the node degree (first order measure, the A Betweenness B Closeness

more connected locally the more central)

- Eigenvector: largest eigenvector of adjacency matrix
(the higher the centrality if my neighbours also have
high values)

- Betweenness: number of shortest pass passing by the
node (how often a node is between any two other)

- Closeness: average length of shortest path with all Leest ceniie Most central
others https://en.wikipedia.org/wiki/Centrality




Multiscale Centrality

We use the time of the transient response peak from a delta initial condition.

We could expect that this time would provide a distance measure between two
nodes, but diffusion on graphs is 'non-trivial’, and often breaks the triangle
inequality:

T * *
Aijﬁ T tij,’r + t-zlk.,r B tjk,’r <0

We then count the number of pairs of nodes that break the triangle
inequality from source node, within a time horizon.

The fraction of such pairs yields our notion of multiscale centrality,
parametrized by the time horizon.



Multiscale centrality on the interval

(a) x,= 0.8 Pl tlan ) — poola) (b) Peak time, t* (g, ) (c) Multiscale centrality, M ()
Peoli) )
= 1o .07 .14
5 1.0 1.0
Hoos
o
3 L 0.8
10 1;) 9 0.8
= 0.5 oF
=]
Lt 3_ 0.6 0.6
= c
Has E f
= w
E 0.4 0.4
L [:7]
10t 10+ I
“ S
Xp= 0.3 0.2 0.2
a4 (Source) :
B
G 0.0 : . 0.0
=z 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.05 0.10 0.15 0.20
o :T:n'-= Xg= 0.3 Source, .'g Small scale T Large scale



Multiscale centrality on a graph
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Comparison with other centrality measures
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(a) Small scale Middle scale Large scale
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Simple examples

Uniform grid:
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(b) Middle scale
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More examples: European power grid and Manhattan road network
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3. Using time and amplitude

Short review on graph dimensions

- obvious for regular graphs (line 1d, grid 2d, etc...)

- In general, the ‘static’ definition is dimension of euclidean
space to ‘draw’ the graph with edges of length = 1

- A physics-based definition how a number of nodes in a
ball of radius r increases with r:

log N (r
d = fim 128 Vo) N,(r) ~ r¢
F—00 log ¥
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Multiscale dimensionalities on graphs

Finally, we use the time and amplitude of the transient peak to define notions of dimensions.
Indeed, on Euclidean spaces, we can relate them with the dimension of the space.

1 2

From the Green function: Gi(x) = deﬂfp(,a/—)
Virgt! Aot
PO 50) = (demot) 4

we have  {(X) = and  p(t) = (demot)” 2.

2do
I(xIxo) —2Inp p —21Inp;;
i i alxXIx = - . 2 e E—
Which we can invert to get 0) =1 (denat) and on graphs:  %ij = | (demoty;)

For each pairs of nodes, we have a notion of relative dimension. We also have a
multiscale nature if we restrict times below a time horizon.

By averaging across nodes j, we have local dimension, and across all nodes | and j, a
global dimension.



Line and grid example
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Some examples: protein structures

far
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More protein structure example
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Some examples: trade data and connetome
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Some examples: ocean drifters
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Summary
« Diffusion on networks is a powerful and versatile tool

« We have shown three ways to use it by only looking at the peak time/amplitude
» Node classification
» Multiscale centrality measures
« Multiscale network dimensions (relative, local and global)

« These can be generalised, as long as a notion of diffusion is well-defined. These
may include: directed graphs, multilayer graphs, higher order (hypergraphs,
simplicity complexes, etc...), etc...

« Codes to compute them are available on github:
» classification: https://github.com/barahona-research-group/GDR
« centrality: https://github.com/barahona-research-group/MultiscaleCentrality
» dimension: https://github.com/arnaudon/DynGDim



https://github.com/barahona-research-group/GDR
https://github.com/barahona-research-group/MultiscaleCentrality
https://github.com/arnaudon/DynGDim
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