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Automated Decision Making (ADM)

Applications
employment
health
education
law
. . .

✓ High scalability
✗ Exhacerbate existing biases
and even introduce new ones

Algorithmic fairness

Enforce group fairness
metrics to mitigate biases
✗ solutions are designed for
stationary systems
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A Systems Theory Framework for ADM

1

The ML-based decision making pipeline as an open loop system

1"A classification of feedback loops and their relation to biases in automated
decision-making systems", J. Baumann, N. Pagan, E. Elokda, GDP, S. Bolognani, A.
Hannak, Conference on Equity and Access in Algorithms, Mechanisms, and Optimization
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Sampling and Individual FL in Recommender Systems
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Sampling FL: Representation bias

The available data is not represen-
tative of the population:
the ML model does not gener-
alize well for the disadvantaged
group, e.g. Amazon’s Alexa.
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Individual FL: Historical bias

Users with high initial interests
get recommended the item: θ
increases over time. Decisions
change individual properties,
leads to polarization of interests.
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A Solution to Representation Bias2

2"Fairness in Social Influence Maximization via Optimal Transport", S. Chowshary,
GDP*, N. Lanzetti*, A. Stoica, F. Dörfler, NeurIPS 2024
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Social Influence Maximization

Suppose you want to sell a product, or make an information spread as
much as possible in a social network:

Social Influence Maximization (SIM) is the problem of how to
strategically selects seeds that spread information throughout a network in
order to maximize the outreach.
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Fairness in SIM

Suppose you want to spread the news about an open position as Assistant
Professor in Control Engineering:

Fairness in SIM: solve SIM by ensuring balanced outreach among
different communities, e.g. demographic groups.

Spreading mechanism: Independent cascade model
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Fairness Metrics in SIM

Given the groups C1, . . . ,Cm, a configuration is said to be

Equal, if the SIM algorithm chooses a seed set S such that

E[|v ∈ S |v ∈ Ci |]
|Ci |

=
E[|v ∈ S |v ∈ Cj |]

|Cj |
∀i , j .

Equitable, if the SIM algorithm chooses a seed set S such that

E[|v reached|v ∈ Ci |]
|Ci |

=
E[|v reached|v ∈ Cj |]

|Cj |
∀i , j .

Max-Min Fair, if the SIM algorithm chooses a seed set S such that

min
i∈[m]

E[|v reached|v ∈ Ci |]
|Ci |

is maximized.
8
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What’s wrong with the Expectation?

Consider the outcome: "In 50% if the cases, no one in group 1 gets the
information and everyone in group 2 does, and in the other 50 % it is the
opposite."
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E[|v reached|v ∈ C1|]
|C1|

=
E[|v reached|v ∈ C2|]

|C2|

The outcome is classified as equitable,
however it is highly unfair.
Note: this also happens in experimental
settings!
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We want to answer questions such as as:

i) When group 1 receives the information, will group 2 also receive it?
ii) Even if the two groups have the same marginal outreach probability

distributions, will the final configurations always be fair?
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Motivating Example
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Figure: Illustration of the (γa,γb) example.

Marginals: µi =
1
2δ0 +

1
2δ1, i ∈ {1, 2}

Distributions:
γa = 0.5 · δ(0,0) + 0.5 · δ(1,1), γb = 0.25 · δ(0,0) + 0.25 · δ(1,1) + 0.25 · δ(0,1) + 0.25 · δ(1,0).

Use the joint outreach probability distribution to capture the
correlation between the two groups!
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A New Fairness Metric

Quantify fairness by computing the distance of the probability
distribution γ from an ideal reference distribution γ∗ along the diagonal.

Optimal Transport Problem: quantifies the minimum transportation cost
to morph γ into γ∗ when transporting a unit of mass from (x1, x2) to
(y1, y2) costs c((x1, x2), (y1, y2)).

Wc(γ, γ
∗) = min

π∈Π(γ,γ∗)
E(x1,x2),(y1,y2)∼π, [c((x1, x2), (y1, y2))]

Ingredients:
i) transportation cost;
ii) reference distribution.
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Fairness Metric Design

Transportation Cost:
moving mass along the diagonal costs 0, as it does not affect fairness
moving mass orthogonally towards the diagonal comes at a price. We
quantify the price as the Euclidean distance.
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z(x1, x2, y1, y2)

c((x1, x2), (y1, y2)) = ∥z(x1, x2, y1, y2)−(x1, x2)∥ =
√

2
2
|(x2−x1)−(y2−y1)|,
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Mutual Fairness

Definition (Mutual Fairness)

Given a network with communities (Ci )i∈[2], a SIM algorithm is said to be
mutually fair if the algorithm propagation is such that it maximizes

FAIRNESS(γ) := 1−
√

2Wc(γ, γ
∗),

Wc(γ, γ
∗) = minπ∈Π(γ,γ∗) E(x1,x2),(y1,y2)∼γ , [c((x1, x2), (y1, y2))] and γ∗ = δ(1,1).

Observations:
min FAIRNESS(γ) = 0; argmin = γ = δ(0,1);
max FAIRNESS(γ) = 1; argmax = γ∗.
since γ∗ is a delta distribution, we can solve the OT problem in closed
form and FAIRNESS(γ) = 1− 1

N

∑N
i=1 |x1,i − x2,i |

14
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Back to the Motivating Example
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Figure: Illustration of the (γa,γb) example.

FAIRNESS(γa) = 1
FAIRNESS(γb) = 0.5.
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Are the outcomes fair?

Joint outreach probability distribution for different real datasets, each with
a chosen demographic partitioning the population in two groups.

Four qualitative outcomes:
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Trading-off Fairness and Efficiency

For both γ = δ(0,0) and γ∗ = δ(1,1) the fairness score is maximal:
We need a fairness-efficiency trade-off!
We can define the transportation cost as a weighted sum:

cβ((x1, x2), (y1, y2)) =

β∥z(x1, x2, y1, y2)− (x1, x2)∥+ (1− β)∥z(x1, x2, y1, y2)− (y1, y2)∥ =

β

√
2

2
|(x2 − x1)− (y2 − y1)|+ (1− β)

√
2

2
|(x1 + x2)− (y1 + y2)|.

Heatmap of cβ:
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β-Fairness

Definition (β-Fairness)
Consider a network with groups C1,C2, a SIM algorithm is said to be β-fair
if the algorithm propagation is such that it maximizes

β − FAIRNESS(γ) := 1−
√

2
max{1, 2− 2β}

Wcβ (γ, γ
∗),

The OT problem can be solved in closed form

β − FAIRNESS(γ) = E(x1,x2)∼γ

[
1− β|x1 − x2|+ (1− β)|x1 + x2 − 2|

max{1, 2− 2β}

]
In particular, for β = 1, we recover the mutual fairness FAIRNESS(γ) and
for β = 0 we obtain the efficiency metric E(x1,x2)∼γ [1− x1+x2−2

2 ].
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Fairness-promoting Seed Selection Algorithm

1

2

3
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Are the outcomes more fair?
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Greedy-based algorithms: ■ = bas_g, • = S3D_g, and ♦ = hrt_g.
Degree-based algorithms: □ = bas_d, ⃝ = S3D_d, and ♢ = hrt_d.
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Recap

New fairness metric for SIM that captures new fairness-related aspects;
We leverage β-fairness to design a new seed selection strategy that
tradeoffs fairness and efficiency;
We show superior fairness performance with minor decrease in
efficiency.

Note: Mutual fairness is applicable whenever you have empirical
distributions associated with groups.
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Sampling and Individual FL in Recommender Systems
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Individual FL: Historical bias

Users with high initial interests
get recommended the item: θ
increases over time. Decisions
change individual properties,
leads to polarization of interests.
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A Solution to Historical Bias3

3S. Chandrasekaran, GDP, G. Belgioioso, F. Dörfler, "Mitigating Polarization in
Recommender Systems via Network-aware Feedback Optimization", submitted.
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Recommender Systems in ML

24
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Paper’s Motivation

Make the feedback loop explicit, to understand

Recommender

clicknews

dataset

i) the impact of recommendation on users opinions;
ii) how recommender systems should depart from engagement

maximization to mitigate polarization.
25
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Setting

We leverage on online feedback optimization to design a RS as a
dynamic feedback controller that mitigates polarization by providing user
personalized content, using only implicit feedback.

Assumption: one single topic of discussion
Assumption: The dynamics is exponentially stable and admits a unique
steady-state map

h(p, d) = f (h(p, d), p, d)

with h(p, d) continuously-differentiable and L-lipschitz wrt p.
26
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Problem Formulation

min
p,x

φclk(p, x) + γφpol(x)

s.t. x = h(p, d)

p ∈ [−1, 1]n

Challenges:
only clicks are available: opinions,
opinion dynamics, network topology,
clicking behaviour, external influence
unknown → the problem must be
solved online
non-convex problem

φclk = −
∑

i∈[n] Eci∼B(gi (xi ,pi ))[ci ]

φpol(x) = ∥x∥2

The recommender system only relies on clicks:
#clk
#news ≈ E[B(g(p, x))] = g(p, x).
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Recommender System Design

The recommender system dynamically generates recommendation via
projected gradient descent

p+ = proj[−1,1][p − η (∇pφ(p, x) +∇ph(p, d)
⊤∇xφ(p, x))︸ ︷︷ ︸

∇φ

]

φ = φclk + φpol.
Challenges
Evaluating ∇φ requires access to:

i) Online opinions x

ii) Sensitivity mapping ∇ph(p, d)

iii) Gradients ∇pφ(p, x), ∇xφ(p, x)

None of these information is available online!
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ζ ∆x̂

∆p

Sensitivity estimation

Kalman Filter
∇p ĥ
Sensitivity estimate

∇pφ̂
clk(p, x̂+),∇x φ̂

clk(p, x̂+)

∇xφ
pol(x̂+)
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x+ = f (x , p, d)
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Level 1: Opinions & Clicking Behaviour Estimation

The recommender system dynamically generates recommendation via
projected gradient descent

p+ = proj[−1,1][p − η (∇pφ(p, x) +∇ph(p, d)
⊤∇xφ(p, x))︸ ︷︷ ︸

∇φ

]

Training data collection

Repeat #training times:

Opinion Dynamics

x+ = h(x , p, d)
p ∼ U [−1, 1]

d
Collect acceptance ratio

c = E[c(k)|p]

Collect SS opinions

x(N)

k ∈ [1,N]

31



ETH Zürich

Level 1: Opinions Estimation

Assumption:
i) There exists a continuous mapping

β(c̄ , p) = x + θ(x), ∥θ(x)∥ ≤ θ

ii) g(x , p) is Lipshitz and globally
smooth.
There exists α s.t.
g(p, β(c̄, p)) = c̄+∇xg(p, x)

⊤θ(x)+α(c̄),
∥α(c̄)∥ ≤ α

Back propagation

ANN β̂i (c i , p)

−

position

avg clks
estimated
opinion

ss opinion{
x̂+i = β̂i (c̄i , p)

p via OFO

Opinion estimation error

∥

ϵx︷ ︸︸ ︷
h(p, d)− β̂∥ ≤

√
n(supc̄,p∥β − β̂∥∞ + ANN bias)

Training is carried out distributedly
3Tabuada, Charesifard, "Universal approximation power of deep residual neural

networks through the lens of control", TAC, 2023
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Level 1: Clicking Behaviour Estimation

Assumption:
i) There exists a continuous mapping

β(c̄ , p) = x + θ(x), ∥θ(x)∥ ≤ θ

ii) g(x , p) is Lipshitz and globally
smooth.
There exists α s.t.
g(p, β(c̄, p)) = c̄+∇xg(p, x)

⊤θ(x)+α(c̄),
∥α(c̄)∥ ≤ α

Back propagation

ANN
ĝi (x i , pi )

−

position

ss opinion
estimated
clicking b.

avg clks{
ĉ+i = ĝi (x̂

+
i , pi )

p via OFO

clicking behaviour estimation error

∥
ϵg︷ ︸︸ ︷

ĝ(p, x̂)− g(p, h(p, d))∥ ≤√
n(supp,x∥g(p, x)− ĝ(p, x)∥∞ + ANN bias + f (θ, α))

3Tabuada, Charesifard, "Universal approximation power of deep residual neural
networks through the lens of control", TAC, 2023
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Level 2: Online Sensitivity Learning

The recommender system dynamically generates recommendation via
projected gradient descent

p+ = proj[−1,1][p − η (∇pφ(p, x) +∇ph(p, d)
⊤∇xφ(p, x))︸ ︷︷ ︸

∇φ

]

To estimate the sensitivity online we rely on Kalman filter.
Note: ∇phij(p, d) ̸= 0→ j and i are connected

To ensure the sensitivity estimate is accurate:
Assumption: The inputs p are persistently exciting.
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Level 3: Gradient Estimation and Optimization

The recommender system dynamically generates recommendation via
projected gradient descent

p+ = proj[−1,1][p − η (∇pφ(p, x) +∇ph(p, d)
⊤∇xφ(p, x))︸ ︷︷ ︸

∇φ

]

φ = φclk + φpol. Estimation via forward difference method

∇x φ̂
clk
i (p, x) =

φ̂clk(p, x + µei )− φ̂clk(p, x)

µ
.

∇pφ̂
clk
i (p, x) =

φ̂clk(p + µei , x)− φ̂clk(p, x)

µ
,

Gradient estimation error
Under the previous regularity assumptions on β, g

∥∇φ̂clk −∇φclk∥ ≤ 1
2
Lxµ+ 2

√
nϵg
µ

; µ∗ = 2n1/4
√

ϵg
L

Smoothing parameter µ, requires fine tooning: small, but not too much!
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Recap

We now collected all the ingedients to run gradient descent for the
recommender system algorithm:

pk+1 = proj
[
pk − ηζk(∇pφ̂

clk(pk , x̂k) +∇pĥ(p
k , d)⊤∇x φ̂

clk(pk , x̂k))
]
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External influence d

Level-I

Level-II

Level-III
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The RS Algorithm

Initialization
Collect data during training
Build opinion and clicking behaviour estimators (β̂, ĝ)
Optimization phase
for k ≥ 0 do

Collect clicks cki ∼ B
(
gi (p

k
i , x

k
i )
)

from users

CTR yk ←
∑k

t=τi
c t

k−τi+1 , τi = (i − 1)T < k

Estimate opinions x̂k+1
i ← β̂i (y

k
i , p

k)
if ζk = 1 then
T ← append[k]
Estimate sensitivity Ĥk

Estimate gradient
Update positions pk+1

else
Ĥk ← Ĥk−1; pk+1 ← pk

end if
end for
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Closed-loop Convergence

We ensure convergence by using the gradient mapping

G(p) := 1
η

(
p − proj[−1,1][p − η(∇φ)]

)
a common metric to quantify convergence in non convex-regimes.

OFO Convergence

Under all the previous assumptions, for η ∈ (0, 1
2(L′)), µ = µ∗, the position

sequence generated by the projected gradient descent algorithm satisfies

1
|T |

∑
l∈T
l≤k

E
[
∥G(pl)∥2

]
≤ K1, ∀k ≥ T

K1 ∝ φ(p0, h(p0, d))− φ∗, ϵ2x , ϵ
2
g , L

′2, 1
η2 , gradient est. error
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Numerical Setup

Opinion Dynamics and Clicking Behaviour
Extended FJ model

x+ = (I − Γp − Γd)Ax + Γpp + Γdd

Users follow two clicking behaviours

ci ∼ B
( 1

2
+

1
2
xipi︸ ︷︷ ︸

Ca

)
, ci ∼ B

( 1
2
+

1
2
e−c(xi−pi )

2︸ ︷︷ ︸
Cb

)

we perform our algorithm over a network of 15 users, with Ca and Cb

randomly distributed. Initial opinion ∼ U [−1, 1], A substochastic,
dk = x0 + noise, Γp ∼ U [10−2, 0.5]
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Experimental Setting and Hyperparameter Selection

Training We train the NN for opinion and clicking behaviour with horizon
N = 100 and collect 75 data points, with trigger period T = 60, with the
clicks being recorded in the interval [N − T ,N]. We take m = 375 training
and 125 testing points.

Online We set p0 = 0 (neutral recommendations). All simulations are
conducted for N = 103 over 50 Monte-Carlo trials.
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Architecture Comparison

Method Sensitivity Opinions Clicking behaviour
M1 (Oracle) ✓ ✓ ✓

M2 ✗ ✓ ✓

M3 ✗ ✗ ✓

M4 (Alg. 1) ✗ ✗ ✗
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Trading off CTR and Polarization

min
p,x

φclk(p, x) + γφpol(x)

s.t. x = h(p, d)

p ∈ [−1, 1]n

Figure: Caption 44
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The Impact of the Network

Figure: Caption 45
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Conclusions
A Model-free recommender system algorithm that balances
engagement maximization and polarization mitigation;
Theoretical guarantees for CL stability;
Validation on synthetic data

Future Directions
Relax smoothness hypothesis on clicking behaviour;
Consider other interests drivers than confirmation bias, e.g. repulsion.
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Thanks for your attention
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Appendix
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Level 2: Online Sensitivity Learning

Sensitivity dynamics as a random process1:

vec(∇ph(p, d))
+ = vec(∇ph(p, d)) + w Process model

∆x+ss = ∆p̃ ∗ vec(∇ph(p, d)) + v Measurement model
where

∆x+ss = h(pk , d)− h(pk−1, d)

wk ∼ N (0,Qk)

vk ∼ N (0,Rk), accounts for the external influence
∆p̃ = (pk − pk−1)⊤ ⊗ In

Sensitivity and covariance updates:

vec(∇ph)
k = vec(∇ph)

k−1 + ζk(K k−1∆x̂k+1 −∆p̃kvec(∇ph)
k−1)

Σk = Σk−1 + ζk(Qk − K k−1∆p̃kΣk−1)
Trigger mecanism: Enforces time-scale separation and ensures that a sufficient number
of clicks is collected (clicking ratio accuracy).
1Picallo, Ortmann, Bolognani, Dörfler, Adaptive real time grid operation via online
feedback optimization with sensitivity estimation Electric Power Systems Research, 2022
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Closed-loop Convergence: Sensitivity estimation

Note: The CTR is recorded over a time horizon with constant p. The
dynamics is exponentially stable: the opinion esitmate is close to the steady
state opinion h(p, d) → we can treat the opinion dynamics as a static map.

CL Convergence
Under all the previous assumptions, the sensitivity estimation error
ek := vec(hk)− vec(ĥk) has bias and variance bounded in norm, with

∥E[ek ]∥ ≤ J1 E[∥ek∥2] ≤ J2

with J1, J2 ∝ ϵx ,
1
T and J2 ∝ σ2

r
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