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Introduction

Empirical food web

Figure: La Grande Caricaie, Switzerland, from L-F Bersier
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Introduction

Ecosystem modelling: a toy model

Simple ecosystem: what happens to the Shark and Tuna populations?
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From Garfinkel et al. Bull. Math. Biol. (2022)

Figure: Predator prey system
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Introduction

Ecosystem modelling: a toy model
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Fig. 2 Geometry of “Shark-Tuna space.” Students learn in the first week that a point (T'g, So) represents the
state of the system at a time

From Garfinkel et al. Bull. Math. Biol. (2022)

Figure: Predator prey system state space
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Introduction

Ecosystem modelling: a toy model

shark births (+b.S) tuna births (+b, T)

meets
S &,
5 ©

shark deaths (-d. S) tuna deaths (-d, T)
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shark birth  shark death  shark eats tuna

“the change in T” Fe= +bTT _dTT —BST

tuna birth  tuna death  shark eats tuna

From Garfinkel et al. Bull. Math. Biol. (2022)

Figure: Predator prey system: Lotka-Volterra (LV) differential equation
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Introduction

Ecosystem modelling: a toy model
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From Garfinkel et al. Bull. Math. Biol. (2022)

Figure: Predator prey system: Vector Field
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Introduction

Ecosystem modelling: a toy model
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From Garfinkel et al. Bull. Math. Biol. (2022)

Figure: The vector field (green) and a trajectory
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Introduction

Vector fields and ordinary differential equations (o.d.e.)
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Figure: Vector field F = (Fy, F>) leads to o.d.e. The orbits are tangent to the vectg‘&g,‘..
field i
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Feasible equilibria x* > 0 with F(x*) =0
One looks for

@ special states x* such that F(x*) = 0, which are the so-called equilibria of
the o.d.e., which give constant solutions,

@ and more importantly, at feasible equilibria with x* > 0 and F(x*) = 0 for
which all species persist.
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Figure: Equilibrium x* with F(x*) =0
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Introduction

Stable equilibria

Such equilibria can be stable
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Figure: Stable equilibrium x*: orbits starting near x* will converge toward x*
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Introduction

Unstable equilibria

or unstable
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Figure: In this case, the equilibrium is unstable: the orbits avoid the equilibrium
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Introduction

Jacobian matrix at x* and stability of x*

Let x* be an equilibrium with F(x*) = 0. Let J(x*) = DF(x*) be the Jacobian
matrix of F at x*, with

o (B B
PN Ew) B
aX1 aXQ

x* is stable when all of the real parts of the eigenvalue of J(x*) are negative.
EE:
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Introduction McArthur consumer-resource model

Example: Food-web with two producers and one consumer
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Figure: The o.d.e. associated to a consumer-resource web. The solutions are such
that x;(t) > 0 when x;(0) > 0.

@ Interspecific competition coefficient a < 0.

@ Intraspecific competition coefficient 6 < 0.
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Introduction McArthur consumer-resource model

Food-web with two producers and one consumer

a X?O b day
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Figure: The o.d.e. associated to a consumer-resource web

The related vector field F = (Fq, F2, Fo) is
Fi(x) =x1(1+6x1 +axa — x3),

F2(X) = X2(1 +0x2+ax1 —X3)7
F3(X) = X3(—1 +9X3 + Xq +X2).
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Introduction McArthur consumer-resource model

Equilibria and parameter changes
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Set & = —1. When |a| > 1, the consumer’s non-zero critical value xj # 0
becomes negative: no feasible equilibrium

@ When |a| < 1, the non-zero equilibrium has positive components so that

all species persist. The non-zero equilibrium x* with F(x*) = 0 is stable
and feasible.

@ When |a| > 1, the consumer becomes extinct x; = 0 while the two
consumers attain positive equilibria x; = x3 > 0.
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General LV dynamics Lotka-Volterra model

Lotka-Volterra dynamical systems on complex networks

dx; .
dlj:x,-(r,-+ex,-+;aax/), i=1,...,8,

where
@ Sis the number of species of the ecosystem,
@ aj: per capita effect of species j on species /
@ r;: intrinsic growth rate of species i
@ 0 < 0: coefficient reflecting intraspecific competition
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Lotka-Volterra model

dx;
d—t’ = x,-(r,-+9x,-+Za,-,-xj).
j
For food webs that describe who eats whom, species j preys on species i when
aj < 0and g; > 0.

One can then consider a directed graph where the arrow (i — j) means
that j consumes /.

In more general webs,competition (or mutualism) between species i and j is
modelled by imposing a; < 0 and a; < 0 (or a; > 0 and g; > 0).
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General LV dynamics Web topologies

Food web and adjacency matrix

Food web networks

A Food Web is a biological network that

Asimple 3 describes who eats whom in an ecosystem

food web &
Rf > * Nodes = species

- !‘ bags 3"‘ et ‘ * Edges = trophic interactions (flow of
/:L‘ energy)
* Predation matrix = adjacency matrix of
the network

Predation matrix

species as prey
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The Bridge Brook Lake matrix
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The cascade model (Cohen, 1985)

The cascade model

i I
‘ ‘ ‘ Species ranks

j i

Species i can feed only on species j having strictly lower ranks

No loop
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The cascade model

The cascade model is stochastic: species can only consume prey of lower rank
with some probability which is the same for all species. The related adjacency
matrices are upper triangular, with no cannibalistic loop and no circuits. Cohen
discovered an excess of non-triangulated webs compared to observed
food-webs.

The cascade model poorly reproduces the structure of highly resolved
food-webs.
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General LV dynamics Web topology and stability

The niche model (Martinez, 2000)

The niche model

Input parameters : - number of species S
- number of trophic links L

1) niche value, n;,
ulo, 1]

WRONIN B WN=a

3) diet centre, ¢;,
Uln/2, n]

[Williams & Martinez, Nature 2000]
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General LV dynamics Web topology and stability

Stochastic niche models and beyond

@ Based on the assumption of a single trophic niche dimension

@ Produce contiguous diets for all species and interval food-webs
@ Able to reproduce closely many empirical patterns

@ Major improvement of the cascade model but

@ Contiguous diets are never observed in observed food-webs.

Besides the cascade and the niche models, the nested-hierachy model (Cattin,
2004) and and a model of Rossberg (2005) take evolutionary of food-webs
into account and relaxes the intervality of the diets of the niche model. We will
also use observed food-webs.
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Complex random predator-prey network models

Mathematical models have been designed to mimic properties of experimental
webs:
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Figure: Three network mathematical model for predation. (a-b) Unstructured networks.
(c-d) Cascade model. (e-f) Niche model, which have designed to mimic the topologies

of empirical webs g i
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General LV dynamics Web topology and stability

Random webs

@ Random unstructured webs: Random graphs of Erdds-Renyi type
where the probability that any edge is present is given by
C =L/S(S—1), where L is the total number of edges.

@ Structured networks: Random webs obtained from the cascade, niche
and nested hierarchy models and empirical webs
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General LV dynamics random interactions weights

Random interaction weights

In most empirical network, both the growth rate vector r and the interaction
matrix A are unknown

A possible method for overcoming this problem consists in assuming that r is
random. The interaction matrix A = (aj) is chosen at random with, e.g.
gaussian entries, of variance ¢2.

This method has been used in practical situations for example to predict the
effect of introducing a new species to an ecosystem (which can be very risky),
see, e.g. Baker et al., Conservation Biol. 2016.
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Interaction strength

dx i 1
a = XO (r+(91d+ (CS)SA)X>

The interaction strength coefficient 0 < § < 1 defines three regimes:

@ Strong interaction strength: 5 < 1/2.
@ Moderate interaction strength: 6 = 1/2.
@ Weak interaction strength: & > 1/2.

The moderate interaction regime with 8 = 1/2 ensures that the total effect of
interactions on species is controlled for species rich systems and is O(1) of
O(1) variance as a function of S.
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General LV dynamics Web topology, interaction weights and stability

Web topology, interaction strengths and stability

Let x* be such that F(x*) = 0 where F is the vector field associated to a LV
dynamics. x* is feasible when x* > 0.

What are the roles of web topologies and interaction strengths on feasibility
and stability of x* ?

There is no clear answer at present time. All observed empirical webs exhibit
similar topological properties. Usually biologists think that web topologies play
a fundamental role, while other state that the topology only plays a marginal
role...

Concerning the role of interaction strengths for complex webs, weak interaction
strengths seem to enforce stability and feasibility. But no clear view point on
this question
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Stability and feasibility for general LV dynamics

Climate change and LV models

We will present some results on structural instabilities associated to such
models, where small changes in parameters like interaction coefficients for LV
dynamics can change drastically the nature of the equilibria, like e.g. stable
equilibria that change into unstable equilibria.

We will then consider such consumer-resource models where the interaction
parameters depend on temperature and where consumers interact in a direct
way with interaction coefficients v;

dN;

W n n
M:di<%—/;aijl\/j—l;Yiij)a (1)

and present the effect of high temperature amplitudes on ecosystems.

Comput. biol. group (Fribourg) Structural instabilities of ecosystem dynamics and « HES-SO, Sion 2023 29/52



Stability and feasibility for general LV dynamics

Lotka-Volterra dynamical systems on random networks
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Stability and feasibility for general LV dynamics

Lotka-Volterra dynamical systems on complex networks

dX,‘ 1
G Xi('7+exi+ SS;ainj>a
where
@ a;: per capita effect of species j on species /,

ri: intrinsic growth rate of species i,

0: coefficient reflecting intraspecific competition,
Cc=1.

d: scaling factor modelling interaction strength.
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Lotka-Volterra dynamical systems on complex networks

dx . 1
a5 = X° (r—i— (6id + §A)x>.

One first looks at the equilibria x* which solve the system
0=x"0o (r—l—(Gld—l— §A)x ),

and then looks for its feasibility and its stability properties as a function of both
r and A.
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Feasibility and stability of equilibria

An equilibrium solving the equation
. 1 *
r—|—(91d+ §A)X :0,

is feasible when x;" > 0, Vi. It is linearly stable when the Jacobian matrix
(the community matrix)

1
J(x*) = diag(x*)(6id + §A),

has eigenvalues of negative real parts. It can be shown that stability can
studied by looking solely at 8id + éA.
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May stability condition

McArthur (1955) argued that complexity, as e.g., measured using the number
of edges in experimental webs or as a function of species richness, begets
stability.

This consensus was challenged by Levins, Ashby, Gardner and May in
the seventies.

May used tools from random matrix theory.
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The circular law

When the interaction coefficients aj are i.i.d. centered random variables of unit

variance, the eigenvalues of A are asymptotically located inside the disc of
radius v/S

ImAYN A

: oReAINn
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The circular law

For centered entries a; of variance o2, the eigenvalues A; are located in the
disc of radius 6/S. The real parts of the eigenvalues A; of 8id + &A are such

that VB
= S
Re(A;) <06+ FG,

so that the stability of x* is ensured when

V'S

S5 c <10].

@ May’s original argument for the case & = 0: As the web becomes more
complex with S >> 1, the equilibrium is unstable.

@ When & = 1/2, stability occurs when ¢ < |6].
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Feasibility

Let ;
B:= (8id + §A), so that x* = —B~'r.

The probability of feasibility is defined by
Ps = Pa,(x* =—B"'r>0),

when A and r are chosen at random.
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Feasibility for random unstructured webs

In Dougoud et al. (2018), we focus on the moderate interaction strength regime
d = 1/2, and assume that the underlying random graph is of Erdés-Renyi type.
Suppose that

@ the random growth rates r; are i.i.d., independent of A,

@ the entries a; are i.i.d. centered,

e E(r?)E(&2,) < 62/4.

Then the equilibrium x* is composed of asymptotically independent gaussian
random variables
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Feasibility for random unstructured webs
The random equilibrium x* = (x;") is such that the random variable are

asymptotically independent with the same normal distribution of mean y and
variance 62 given by

~ E(n) > Var(n) E(r?)c?
H= >0, 6°= 02 +92(92_62)'

Hence,

with
tA u?

P(x; >o)~¢(Eg1))where d>(t)=/w\/27t 2
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Feasibility for random unstructured webs

Probabiliy of feasibility for large random unstructured webs

Therefore,
E(ﬁ ) )S
6 )

where @ is the standard gaussian cumulative distribution function.
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Figure: Plot of Ps for increasing species numbers S. Predictions for random
mutualistic networks, random competitive networks, random predator-prey networks
the cascade model, the niche model, and the nested-hierarchy model.
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Feasibility for random unstructured webs

Feasible steady states are stable

Strong interactions Moderate interactions

Weak interactions

150015 : Feasible : 0/100 051y Feasile:19/100  %%4[¢ Feasible : 100/100
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Figure: b) moderate interactions: eigenvalues of the Jacobian J(x*) for 100

realizations of May’s model when S = 150, 6 = —1 and ¢ = 0.4. Eigenvalues of

feasible systems are in blue
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Feasibility for random unstructured webs

A feasibility phase transition

In a recent work, Bizeul and Najim (2019) consider random LV linear
equilibrium equations (6 = —1, r =1g)

1— *—1—71 F=0, 1s+Bx*=0
: ) ajx = X" =
K asS'/? - i’ S ’

where Olg — o0 as S — oo, Let

os =+/2In(S).

They proved the following phase transition phenomenon
@ If there exists € > 0 with ais < (1 —€)ag, then

P(minx;’ >0) — 0,

@ If there exists € > 0 with ais > (1 +€)ag, then

P(minx; >0) — 1.
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Stability but no feasibility, loss of biodiversity

When ¢ is fixed, stable equilibria of LV dynamics with random coefficients are
not feasible, so that species extinctions occur generically in LV
mathematical models of species rich ecosystems, for both unstructured
and structured models exhibiting competition, mutualism and predation.

Adopting the LV modelling framework, one can try to check what are the
consequences of climate change on the LV dynamics.
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Globally asymptotically stable equilibria
Clenet et al. (2022), arXiv, considered LV systems with

B= —1d+—+—117
ayv/S S
where 1= (1,...,1)7. The dashed grey domain ensures the existence of a
unique (non-feasible) globally asymptotically stable equilibrium (a = o and
m = p)

Zone B

15
a
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McArthur model Consumer-resource web and McArthur model

Consumer-resource web

a X:O b dz;
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Inter-specific
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Figure: The o.d.e. associated to a consumer-resource web.

@ Interspecific competition coefficient a < 0.

@ Intraspecific competition coefficient 8 < 0.
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McArthur model Consumer-resource web and McArthur model

McArthur model for consumer-resource webs

MacArthur developed a seminal consumer resource model that describes the
time evolution of the biomass N; of consumer i/ and that of abundance of

resource K:
dN;

& diNi<zk:CikaRk - Ti)7 (2)
where

@ Ry denotes the abundance of resource k,

@ wy is the weight of item of resource k in gram,

@ cj is the probability that consumer i encounters and eats an item of
resource k per unit of time,

@ d; is a constant of proportionality governing the biochemical conversion of
grams of resource into grams of N;.

Comput. biol. group (Fribourg) Structural instabilities of ecosystem dynamics and « HES-SO, Sion 2023 46/52



Consumer-resource web and McArthur model
McArthur model for consumer-resource webs

The resources have equations describing their own renewal
dRy

dt Tk
a1k ke — RO)Y =Y kN 3

where the term in bracket is a logistics self-inhibition of resource by itself.

MacArthur assumed a quasi-equilibrium by setting dRx/dt = 0, so that

Kk
Rk:Kk_ZQK?Mv (4)
Ji k
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Consumer-resource web and McArthur model
Consumer-resource dynamics at quasi-equilibrium

This quasi-equilibrium leads to the LV equation

dN;

an; n
& — (K- Y o), ©)
N; =
with indirect resource based interaction coefficient
WkKk
jj = ZCiijk = Q.
K Tk

For a single resource, this becomes o,; = c¢;¢;. Within this quasi-equilibrium
where resources reach equilibrium much faster than consumers, the
competition matrix o is symmetric. MacArthur used this symmetry to get a
Lyapunov function that shows that the orbit of the o0.d.e. reach the globally
asymptotically stable equilibrium point.
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Consumer-resource dynamics at quasi-equilibrium

We obtained the following LV system assuming quasi-equilibrium in the
McArthur consumer-resource system

dN
— dN; (% - Z o) ©)
with indirect resource based interaction coefficient
M
Qj = Z Cik Cjk = Qi
k=1

for M resources. This corresponds to a LV model with interaction matrix
B=-CC', C=(ckx) €RS*M,

In this case there is a unique globally asymptotically stable equilibrium
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McArthur model Consumer-resource web and McArthur model

Structural instabilities for consumer-resource models

Dalmedigos and Bunin, PLOS Comput. Biol. 2020, considered perturbations of
(6) of the form

dN; S

EL =K+ Y BN+

at =
where the extra parameter 1; models immigration (which is assumed to be
small). In this study, S, M — oo. The perturbed LV interaction matrix takes the

form

A Hd, T o2 Mc T Me T
—B=0® (—+—=141 +—-C(a+ 151])(a+ 1517)7,
(\/5 S S) S ( \/560 M)( \/§Gc M)
N—_——
non-symmetric perturbabtion c
oc/VS
cc

\\\\\\\\\\\\\\\\\\
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

adjusted to preserve a fixed amount of perturbation.
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McArthur model Consumer-resource web and McArthur model

Structural instabilities for consumer-resource models

These plots illustrate perpetual oscillations for the previous model
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McArthur model Consumer-resource web and McArthur model
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Fig 2. The model exhibits three phases, i.e. regions with qualitatively distinct behavior. In one, the system converges to a stable fixed point (FP), in
another fixed points of the system are unstable yielding persistent dynamics (PD). In the third phase, growth (UG), species abundances grow
‘without bound. w is adjusted in order to maintain constant perturbation strength of 0.05. (A) Color map of the ratio §*/M, indicating how close the system
s to competitive exclusion §'/M = 1, assuming an equilibrium reached. In the PD phase the calculation of $*/M is no longer valid and 8'/M > 1 may be
reached (see later sections). (B) The minimal real part of eigenvalues of the interaction matrix between coexisting species, A,y Fixed point stability is lost at
Juin = 0, where the solid line separates the FP and PD phases. The increase in §'/M reduces the stability of the equilibria, triggering a transition to persistent
dynamics. (C) Probability of reaching persistent dynamics along a vertical cross section of the diagrams in panels A and B, in simulations with different
pool richness S. The transition between equilibrium and non-equilibrium outcomes becomes sharper as system size increases, and matches the theoretically
predicted transition point between the phases (dashed line).
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Figure: FP: stable equilibrium. PD: persistent dynamics. UG: unbounded grow%w
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