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Dangers of Unintended Memorization

AI models are trained on huge collections of 
data, usually scraped from the internet.

Carlini, Nicholas, et al. "Extracting training data from large language models." 2021.

For example, language models can be prompted 
to accurately generates

● Work address
● Email
● etc.



Memorization is also an issue for text-to-image models

https://arxiv.org/pdf/2301.13188.pdf 

https://arxiv.org/pdf/2301.13188.pdf


Dangers of Unintended Memorization

Obvious problem if trained with private 
data 

https://xkcd.com/2169 

But not only

Important to grant users control over their 
data (even if publicly available)

https://xkcd.com/2169


Practical case

In 1998, a Spaniard named Mario Costeja 
Gonzalez had hit financial difficulties.

To solve them, a property of his was put up for 
auction - the details of which were covered in a 
newspaper, which subsequently went online. Mr 
Gonzalez is keen to move on.

Issue: Whenever you search for his name, news 
about the auction still features prominently. He 
argued that this damaged his reputation, and 
should be removed from Google's search results.



Ruling Google Spain v AEPD and Mario Costeja González

The Court of Justice of the European 
Union ruled that an Internet search engine 
operator is responsible for the 
processing that it carries out of personal 
data which appear on web pages 
published by third parties, upholding a 
right of erasure

https://reportcontent.google.com/forms/rtbf 

https://reportcontent.google.com/forms/rtbf


Regulations already in place

“data subject have the right to 
obtain from the controller the 
erasure of personal data 
concerning him or her" 

General Data Protection 
Regulation (GDPR), Adopted 
March 2014

"You may request that 
businesses delete personal 
information they collected from 
you and to tell their service 
providers to do the same."

California Consumer Privacy Act, 
Adopted June 2018

CCPA



How do we delete information?

✂ Easy if information in database

But what if that information is inside a ML 
model ? 🤔



Legal precedent

https://www.ftc.gov/news-events/news/press-releases/2021/01/california-company-settles-ftc-allegations-it-deceived-consumers-about-use-facial-recognition-photo 

https://www.ftc.gov/news-events/news/press-releases/2021/01/california-company-settles-ftc-allegations-it-deceived-consumers-about-use-facial-recognition-photo


How do we delete information?

Ideal (yet expensive) solution

● Remove problematic samples from 
train set

● Retrain

The problem of Machine Unlearning

Design fast algorithms that produce 
models that are indistinguishable 
from the models that would have 
arisen from retraining.



Machine Unlearning

1
Photo credits: https://blog.dropbox.com/topics/work-culture/to-escape-entrenched-views--we-need-to-get-better-at--unlearning 

https://blog.dropbox.com/topics/work-culture/to-escape-entrenched-views--we-need-to-get-better-at--unlearning


Unlearning Pipeline
Users  requesting deletion

Source: https://blog.research.google/2023/06/announcing-first-machine-unlearning.html 

Gold Standard

How close are these two models?

https://blog.research.google/2023/06/announcing-first-machine-unlearning.html


    ||                  -                         ||

Obvious solution

Distance between "gold standard" and unlearned 
model. 

"Gold-standard" is not a 
single model. Different 
solutions are valid due to:

● Stochasticity

● Non-convexity



Unlearning as hypothesis testing

auditor

hide which one you picked

● Unlearning algorithm is good if the auditor can't distinguish them

● Best unlearning algorithm makes both indistinguishable



Formal definition of 𝟄-unlearning

https://arxiv.org/pdf/1911.03030.pdf 

x ∈ D is a sample in forget set

● A(D\x) = 
                           

● U(A(D), D, x) =

                           

https://arxiv.org/pdf/1911.03030.pdf


Relationship with 𝟄-differential privacy 

𝟄-unlearning
For all datasets D1 = D and D2 = D\x that 
differ on a single element we have

𝟄-differential privacy

● 𝟄-Differential privacy implies 𝟄-certified removal with U = identity.

● Differential privacy is a stronger notion of privacy
○ Can't memorize any individual element 



Won't differential privacy solve all our problems?

Yes but

● DP-SGD sacrifices utility

● We hope unlearning has a better 
trade-off

○ Provably the case (Sekhari et al. 2021)

De, Soham, et al. "Unlocking high-accuracy differentially private image classification through scale." (2022).

Sekhari, Ayush, et al. "Remember what you want to forget: Algorithms for machine unlearning." (2021)

SOTA (~95%)



    ✅   Strong unlearning guarantees

    ❌  Applies to strongly convex linear models
○ Exact for least squares
○ Iterative for logistic regression

    ❌  Cost solving a linear system



      ✅  Proves "strict separation between DP 
and machine unlearning"

      ❌  Applicable to convex losses

      ❌  Algorithm based on performing 
Hessian inversion + noise injection

https://arxiv.org/abs/2103.03279 

https://arxiv.org/abs/2103.03279


    ✅ Scalable: ~GD on retain set + noise

  ❌ Guarantees only applicable to convex 
objectives

https://arxiv.org/abs/2007.02923 

https://arxiv.org/abs/2007.02923


Need for unlearning algorithm

    ✅  Scalable

   ✅ Applicable to non-convex 
objectives

    ✅  Doesn't sacrifice (too much) utility

Existing approaches
    ❌  Apply to convex objectives
               and/or

    ❌  Computationally costly



The 2023 
NeurIPS 
Unlearning 
Challenge 2



● Accepted proposal to organize 
the first unlearning competition

● Decided on a dataset:
○ CASIA-SURF
○ Faces annotated with 

age groups

Zhang, Shifeng, et al. "Casia-surf: A large-scale multi-modal benchmark for face anti-spoofing." IEEE Transactions on Biometrics, 
Behavior, and Identity Science 2.2 (2020). https://arxiv.org/abs/1908.10654 

https://arxiv.org/abs/1908.10654


Evaluating unlearning

Forgetting qualityUtilityEfficiency

Time (seconds)
FLOPs

Absolute or relative to 
retrain

Accuracy of the model How well have we 
forgotten?

Threshold: entries that take more 
than 10% of total training time are 
eliminated

    Accuracy on retain/test set 😱😱😱😱⚙  ⚙  ⚙  

https://emojipedia.org/gear
https://emojipedia.org/gear
https://emojipedia.org/gear


Evaluating unlearning

Goal: evaluate 𝟄 in

● A(D\x) = 
                            training without forget set

● U(A(D), D, x) =

                           unlearning algorithmTypically bounding 𝟄 is a theoretical contribution

● Can we ask participants to provide such a bound?

● How can we evaluate soundness of the this derivation?



Monte carlo methods

Estimating complex 
probabilities can 
sometimes be achieved 
by running a large number 
of experiments 

https://en.wikipedia.org/wiki/Monte_Carlo_method 

https://en.wikipedia.org/wiki/Monte_Carlo_method


Unlearning as hypothesis testing

auditor

hide which one you picked

Repeat O(1000) times



Unlearning as hypothesis testing

auditor

hide which one you picked

��
ML-based 
decision

(Membership 
inference 
attack)

Repeat O(1000) times



Inspiration from the differential privacy literature



Simplifications for efficiency 

● We estimate the distributions of retrained / unlearned outputs for each example 
● Instead of considering weight space, we consider distributions of (scalar) outputs when 

receiving ‘forget examples’ as input 
● We run many ‘attacks’, compute accuracy of  and keep the worse (largest) 

After having computed each 
example’s      , we aggregate 
them via a bucketing procedure



Evaluating unlearning

Forgetting qualityUtilityEfficiency

Time (seconds)
FLOPs

Absolute or relative to 
retrain

Accuracy of the model How well have we 
forgotten?

Threshold: entries that take more 
than 10% of total training time are 
eliminated

    Accuracy on 
retain/test set Monte-Carlo approach⚙  x x

https://emojipedia.org/gear


Unusual competition

   Standard Kaggle competition
○ Download dataset
○ Submit labels

    This one was very different. 
Participants had

○ No access to dataset
■ Can't run locally

○ No implementation to 
evaluation (only rough 
description)
■ Avoid overfitting to metric



We launched on September 2023

3-months after schedule

● Baseline of "fine-tuning" (training for few 
epochs on "retain set")

●

Nightmare scenarios

● Problem is too hard: nobody does better 
than baseline (happened to others)

● Participants find a "backdoor" in the 
evaluation, manage to win without really 
unlearning



A look at the 
top 
submissions 3



In numbers

5,161 registrations

1,338 participants from 72 
countries.
For 500 (including 44 in 
the top 100!), this was 
their first competition

1,121 teams

1,923 submissions

Leaderboard: 40% scored above baseline 🤯

https://emojipedia.org/exploding-head


Top submissions



6th place solution - Algorithmic Amnesiacs

1. Reset first and last layer of the original model. 
2. Warm-up phase employing knowledge distillation
3. Fine-tuning phase.



6th place solution - Algorithmic Amnesiacs

Reset first and last layers:

● First layer significantly 
influences the rest of the model 
layers and the last layer 
determines the model’s final 
output distribution.

● On CIFAR-10: these two layers 
exhibited the most negative 
cosine similarity between model 
weights trained on the full 
training set and models trained 
from scratch on a smaller 
subset (i.e., the retain set).



6th place solution - Algorithmic Amnesiacs

Warm-up phase

Minimize KL divergence between the 
outputs of the original pre-trained 
model (teacher) and the reinitialized 
model (student) on the validation 
set.



6th place solution - Algorithmic Amnesiacs

Fine-tuning using 3 losses

Cross-entropy for model's 
accuracy using hard labels on 
retain set.

Soft cross-entropy for predictions 
of the student model with soft 
labels from the teacher model.

KL divergence combined with the 
soft cross-entropy facilitates rapid 
knowledge transfer and broader 
information capture.



Common trends

All submissions followed a strategy of two stages: Forget and fine-tuning

Fine-tuning

7th: standard fine-tuning

6th: knowledge distillation + fine-tuning + uses 3 losses (the 
sum)

5th: pseudo-labels

4th: regularize with entropy

2nd: standard fine-tuning but with a very small learning rate 
(1/10th of original)

1st: standard fine-tuning

Optimization-based forgetting (lack of a better name …)

● 4th: prune weights based on L1 norm
● 2nd: difference of gradients
● 1st: minimize KL-divergence between output logits and a 

uniform pseudo label on forget set. Also, there's a "forget 
round: Maximize dissimilarity between logits of forget and 
retain set"

Forgetting

Random reinitialization / untargeted

● 8th: model parameters are stochastically selected and 
re-initialized.

● 7th: reset last layer + add noise to N=9 (randomly 
chosen) layers 

● 6th: reset first and last layer
● 5th: permute weights



4th place solution - Sebastian Oleszko

1. Re-initializing/pruning 99% of parameters based on L1-norm (Unstructured)
○ Weights: Pytorch default initialization
○ Biases: Set to zero (prune)

2. Fine-tune on retain dataset
○ Regularize using entropy
○ Cross entropy class weights as 

Cross-entropy MSE of entropy

Initial weights



4th place solution - Sebastian Oleszko

● CIFAR-10 experiment
● Impact of most important hyperparameters: Learning rate/epochs and pruning percentage
● Effect of including entropy regularization
● Tuning on public submission scores

Increase Pruning %



Conclusion

🔐Machine Unlearning is essential to safely 
deploy AI systems at scale

📚 There are rigorous definitions of machine 
unlearning

💻 Theoretical notions, but which can be 
approximated with computational methods 

 🏆 Organizing a machine learning challenge is 
hard – but also fun!



8th place solution - Team Forget

(1) Forgetting phase: model parameters 
are stochastically selected and 
re-initialized.
    - FC, Projection-shortcut layers are 
excluded from the selection pool.

(2) Remembering phase: knowledge 
preserving loss is calculated between 
the original model and the target 
unlearning model.
    - Knowledge Preserving Loss:

    - Gaussian noise is added to the 
image as data augmentation.
    -  It reminds the target model about 
the retain set.

(3) Forgetting phase and Remembering 
phase are repeated for n cycles to 
enhance unlearning performance.



8th place solution - Team Forget

(a) CE (b) MSE

Forget Set

Retain Set

Figure. Comparison of logit distributions between CE loss and MSE loss

- Histograms of logits from retrained model and 
unlearned models are visualized.

- This observation is acquired from local 
experiments on CIFAR-10.

- MSE loss makes closer distributions than CE 
loss for both forget set and retain set.



8th place solution - Team Forget

Table 1. Comparison between different data augmentation techniques

Table 2. Comparison between different sigma of gaussian noise

Table 3. Comparison between different loss functions Table 5. Final submission score compared with other unlearning methods

- Gaussian Noise (σ=0.1) is the best data augmentation 
compared with other data augmentation techniques.

- Compared with CE loss and L1 loss, MSE loss 
demonstrates the best score.

- Additionally, increasing the cycles highly improves the 
performance.

- From these observations, we build the final submission.

Table 4. Effect of cycles



7th place solution - Jiaxi Sun

Solution that only makes use of retain set

1. Reset parameters of last layer

2. Randomly selecting N=9 layers from the network and add noise
a. Adding noise helps the network 'forget' the information it has learned, and the 

randomness of the layer selection contributes to enhancing the model's diversity.

3. Fine-tune all network layers



Summary

Our solution is the ensemble of two approaches: 
　(1) Retraining from transposed weights
　(2) Fine-tuning with pseudo-labels.

Our solution is built upon two distinctive approaches, contributing to the stability of our 
solution in the private LB.

(1)  Retraining from transposed weights (2) Fine-tune with pseudo-labels Public LB Private LB

512 models 0 models 0.0720386947 -

0 models 512 models 0.0707241647 -

246 models 266 models - 0.0785184178

266 models 246 models - 0.0756313425

5th place solution - toshi_k & marvelworld



5th place solution - toshi_k & marvelworld

(1) Retraining from transposed weights

● This part retrains the model using a modified version of the original model.
● In this modification, all weights in Conv2D are transposed. This process helps in 

forgetting samples in the forget-set, enabling the reuse of valuable features from 
the original model.

The modification is carried out simply like this.

Block A 7x7 Conv 64

3x3 Conv 64

3x3 Conv 64

Block B

w1 w2 w3

w4 w5 w6

w7 w8 w9

ResNet18
w9 w7 w3

w8 w5 w2

w7 w4 w1

Transpose !

All weights in 
Conv2D are 
transposed



(2) Fine-tuning with pseudo-labels

Figure 1: Inference shifts 
between the pretrained model 
and the fine-tuned model, 
showcasing significant shifts in 
the incorrect direction.

Figure 2: Inference results of the 
scratch model. Triangle-up marker 
indicates high confidence but they 
are making incorrect inferences.

5th place solution - toshi_k & marvelworld

● This part reproduces behavior (errors) on the forget data with pseudo-labels
from two functions.



4th place solution - Sebastian Oleszko

Entropy-based regularization 
Helps to achieve a more similar prediction distribution/confidence.

Unlearning through pruning/re-initialization
Effective as unlearning technique. Most of the performance is retainable even with high 
pruning percentage.

Concluding thoughts

● Hyperparameter tuning is very important to achieve high scores

● Final submission was only fine-tuned for 3.2 epochs - maybe not optimal



3rd place solution - Seif Eddine Achour

Details forgotten but 
the general idea was 

retained

Weighted 
cross 

entropy

Vision reconstitution 
on the Retain Set 
through 3 epochs

Slight confusion & 
a final stabilisating 

epoch

Model 
Unlearned!

Vision Confusion Class Imbalance

Hard Differentiability

Competition approach: vision confusion - reconstitution

The confusion process is instant. The whole computation is dedicated to the 
vision reconstitution (Time Efficient).



3rd place solution - Seif Eddine Achour

Regression

Paper approach: Loss landscape adjuster

The model forgot totally about the unwanted data despite its big size

Original r-squared = 0.28   vs   Unlearned r-squared = 0.97!



3rd place solution - Seif Eddine Achour

Paper approach: Loss landscape adjuster

Classification

● Good results without considering the Forget Set (1st approach)

The proper use of the Forget Set will certainly improve results

-1% accuracy on Retain Set lead to -24% of accuracy on Forget Set

● The retrained model is not always the ideal one

The metric which check the similitude between the unlearned and 
retrained model is not that representative for the unlearning 
performance



2nd place solution - [kookmin Univ] LD&BGW&KJH

Gradient-based re-initialization method
We assumed that if the gradients of the weights in the model, specifically in the retain set and forget set, are similar, it becomes 
challenging to forget information from the forget set during the retraining of the retain set.

proposed gradient-based re-initialization method for unlearning consists of three main steps:

1. Gradient Collection:
Gradient information is collected from the forget set and the retain set. 

2. Weight initialization:
Based on the gradient information collected in the first step, a percentage of the convolution filter weights are re-initialized. 

3. Retraining:
The model is retrained with the retain set. The learning rate for the Uninitialized weights uses 1/10 of the base learning rates.



2nd place solution - [kookmin Univ] LD&BGW&KJH

1. Gradient Collection 

2. Weight initialization 

● Collect gradients of forget set using gradient ascent

● Collect gradients of retain set using gradient descent

● Random sampling was used from the retain set to match the 
number of samples in the forget set 

● In short, this is simply subtracting forget set’s gradient from 
the retain set’s gradient

● Based on the gradient information a percentage of the 
convolution filter weights are re-initialized

● Our best method re-initialized 30% of convolution filter 
weights



2nd place solution - [kookmin Univ] LD&BGW&KJH

3. Retraining

● Re-initialized Model is trained using the retain set

● Learning rate for the uninitialized weights uses 1/10 of the base learning rates (accomplished by scaling the gradient of 
uninitialized weight)

● Used a linear decay learning rate scheduler with a few warmup epoch

○ Consistently produces better results than other learning rate schedulers

○ Used warmup epoch of 3
(0.00033 to 0.001 in the first 3 epochs, and then linearly decreases from 0.001 to 0.00033 in the last 2 epochs)



1st place solution - fanchuan

1. Forget phase: minimize KL-divergence between output logits 
and a uniform pseudo label on forget set.

2. Adversarial fine-tuning phase. Alternate between "forget" and 
"retain" rounds:

Forget round: Maximize dissimilarity
between logits of forget and retain set

Retain: original loss (cross entropy) on retain set.

Trick: Increase batch size from 64 to 258 to be able to perform more epochs (6 -> 8)



Conclusion

4



Thank you.
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Title

Firstname Lastname
Title
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The gold standard of unlearning



How good is our approximation? 

How close are these two distributions? 


