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Brain as a dynamical system: Dynamics on neuronal networks
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Synchronization: A bridge from the microscopic to the macroscopic
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Circadian rhythm is produced by the synchronized activity
of about 20,000 neurons in the suprachiasmatic nucleus



Mathematical model of the central circadian clock
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Although simple, it can explain a lot of

the clinical / experimental observations
Lu et al., Chaos 2016.

Hannay, Booth, and Forger, Sci. Adv. 2018.



Incorporating peripheral clocks
Light
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Reduced model on invariant manifold answers new questions
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There is a hidden four-dimensional manifold that is invariant and attracting under the dynamics

Reduce the model from 20,000+ coupled ODEs to 4 coupled ODEs with physiologically
meaningful macroscopic variables

The model allows us to ask interesting new questions about the effect of competing stimuli
E.g., use food to combat jet lag
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Brain as a dynamical system: Networks from neuronal dynamics

Faskowitz, Betzel and Sporns, Netw. Neurosci. (2021).




How important are higher-order interactions in the brain?

Faskowitz, Betzel and Sporns, Netw. Neurosci. (2021).

Is the brain more like this? Or that?



We need a method that can infer higher-order interactions from time-series data

Giulia De Pasquale
TU Eindhoven

VS

Robin Delabays
HES-SO

A generalization of the (causal) network inference problem

Must be model free: Because we don’t have a reliable model for brain dynamics!
Key challenge: How to distinguish a triangle and a 2-simplex from dynamics?
Key idea: Taylor expansion and sparse regression

Florian Dorfler
Delabays, De Pasquale, Dorfler, and Zhang, Nat. Commun. 2025 ETH Ziirich



Higher-order interactions shape macroscopic brain dynamics

Relative contribution from each order of interaction
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* Resting-state EEG data from 109 subjects

 Divide the brain into 7 regions, infer up to the fourth-order interactions

» Around 60% of the dynamics are explained by nonpairwise interactions

* The six most prominent (directed) hyperedges all point toward area 1 (roughly the prefrontal cortex)!
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Learning dynamical systems from data: Equation discovery

Sparse regression
(e.g., SINDy)

Genetic programming /
Symbolic regression

Koopman/DMD




Learning dynamical systems from data: Forecasting

Train Forecast
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Reservoir computing Recurrent neural nets Transformers

Neural ODE Neural operators Physics-informed neural nets



Learning dynamical systems from data: There is usually a tradeoft

Reservoir computing

Transformer
More data Neural ODE SINDy oo data
More compute l l Less compute
S — s - -
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Less constrained [ STM RNN PINN Next-gen RC More constrained

You either need a good model, or a lot of data

Zhang and Cornelius, PRR 2023.



What if we lack both model and data?

In many applications, we don’t have a good model,
and high-quality data are not easy to come by

E 2 | | | | | | | | 4 LDE
py — Sardine | o
— Sugihara, et al. Science 2012. — Anchovy|| =
a &
c =
5 1 1°%
C C
< «
O <
E 0 | e | ] 0 O
(dp) 1930 1940 1950 1960 1970 1980 1990 2000 é

Can we forecast what happens next solely based on a short context time series?

This is a task that many living systems solve everyday (e.g., crossing the street)
Can we use pre-trained transformers (foundation models) for this task?

What strategies do they use to make zero-shot forecasts?



Foundation models vs classical models

Data from Lorenz
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Chronos: ChatGPT for time series
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Trained on both real-world time-series data (weather, finance, traffic, etc.) and synthetic data

Works for both encoder-decoder and decoder-only models Ansari, et al. TMLR 2024.



Why applying foundation models to chaotic dynamical systems?

* Test generalization (Chronos wasn’t designed to forecast chaotic systems)

* Not just short-term “weather,” but also long-term “climate”

* Machine learning of dynamical systems still very much in the old paradigm of
“training on the same system you want to predict”




One example and two surprises
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Zhang and Gilpin, ICLR 2025
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Chronos performance can be sensitive to initial conditions
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Chaos as a benchmark for zero-shot forecasting of time series

135 chaotic systems 20 initial conditions Measure performance

short-term long-term invariant

Input as accuracy properties
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None of the chaotic trajectories are used to tune the weights of foundation models




Short-term forecast accuracy
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Long-term attractor reconstruction

True attractor
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Foundation models effectively forecast previously unseen dynamics
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Foundation models use simple strategies for zero-shot forecasting
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. Chronos basically does context parroting]
Zhang and Gilpin, ICLR 2025



Chronos rediscovered a classical strategy from nonlinear forecasting on its own

Article | Published: 19 April 1990

Nonlinear forecasting as a way of distinguishing chaos
from measurement error in time series

George Sugihara & Robert M. May

Nature 344,734-741(1990) | Cite this article

9570 Accesses | 1473 Citations | 15 Altmetric | Metrics

Abstract

An approach s presented for making short-term predictions about the trajectories of chaotic
dynamical systems. The method is applied to data on measles, chickenpox, and marine
phytoplankton populations, to show how apparent noise associated with deterministic chaos
can be distinguished from sampling error and other sources of externally induced
environmental noise.



Simplex projection vs context parroting
Owen Petchey, 10.5281/zenodo.57081
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Chronos basically rediscovered the simplex projection idea in Sugihara & May, Nature (1990),
but with a higher embedding dimension and no averaging




How did Chronos discover context parroting?

[A] [B] .. [A] - [B]

Context parroting could come from induction heads, which
underlies a lot of in-context learning in simple transformers

Olsson, et al., Transformer Circuits Thread, 2022.
Reddy, ICLR 2024



Context parroting as a mechanism for zero-shot forecasting

l a

Parroting

It's not just zero-shot forecasting,
context parroting has zero parameter
and requires zero training!

Can it outperform Chronos?

Chronos




Context parroting vs foundation models
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Context lengths matter

Context parroting can better utilize longer context data

Chronos do better than parroting for short contexts. How?
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Context parroting vs foundation models
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